

Agilent PNA Series Microwave Network Analyzers

Data Sheet

This document describes the performance and features of the Agilent Technologies PNA Series microwave vector network analyzers:

E8362B 10 MHz to 20 GHz
E8363B 10 MHz to 40 GHz
E8364B 10 MHz to 50 GHz
E8361A 10 MHz to 67 GHz

Some Definitions

All specifications and characteristics apply over a $25~^{\circ}\text{C}$ ±5 $^{\circ}\text{C}$ range (unless otherwise stated) and 90 minutes after the instrument has been turned on.

Calibration: The process of measuring known standards to characterize a network analyzer's systematic (repeatable) errors.

Characteristic (char.): A performance parameter that the product is expected to meet before it leaves the factory, but that is not verified in the field and is not covered by the product warranty. A characteristic includes the same guardbands as a specification.

Corrected (residual): Indicates performance after error correction (calibration). It is determined by the quality of calibration standards and how well "known" they are, plus system repeatability, stability, and noise.

Nominal (nom.): A general, descriptive term that does not imply a level of performance. It is not covered by the product warranty.

Specification (spec.): Warranted performance. Specifications include guardbands to account for the expected statistical performance distribution, measurement uncertainties, and changes in performance due to environmental conditions.

Standard: When referring to the analyzer, this includes no options unless noted otherwise.

Typical (typ.): Expected performance of an average unit, which does not include guardbands. It is not covered by the product warranty.

Uncorrected (raw): Indicates instrument performance without error correction. The uncorrected performance affects the stability of a calibration.

Table of Contents

E8362/3/4B
Corrected system performance 4
System dynamic range4
Receiver dynamic range6
Corrected system performance
with 2.4 mm connectors
Corrected system performance
with 3.5 mm connectors9
Uncorrected system performance
Test port output
Test port input
E8361A
Corrected system performance 20
System dynamic range
Uncorrected system performance
Test port output
Test port input
Microwave PNA Series
General information
Measurement throughput summary 37
Cycle time vs. IF bandwidth37
Cycle time vs. number of points 37
Cycle time
Data transfer time
Measurement capabilities
Source control
Trace functions
Automation
Data accuracy enhancement 41
Storage
System capabilities
PNA Series simplified test set block diagram 44
Ordering guide for PNA Series
Network analyzers
Information resources 48

Corrected system performance

The specifications in this section apply for measurements made with the Agilent E8362/3/4B PNA Series microwave network analyzer with the following conditions:

- 10 Hz IF bandwidth
- · no averaging applied to data
- isolation calibration with an averaging factor of 8

Note: Samples of uncertainty curves are included in this Data Sheet. Please download our free uncertainty calculator (www.agilent.com/find/na_calculator) to generate the curves for your setup.

System dynamic range¹

Description	Specification (dB) at test port ²	Typical (dB) at direct receiver access input ³	Supplemental information
Dynamic range			
Standard configura	ation and standard p	ower range (E8362/3/4B)	
10 to 45 MHz ⁴	79	N/A	
45 to 500 MHz $^{\rm 5}$	94	N/A	
500 MHz to 2 GH	lz 119	N/A	
2 to 10 GHz	122	N/A	
10 to 20 GHz	123	N/A	
20 to 30 GHz	114	N/A	
30 to 40 GHz	110	N/A	
40 to 45 GHz	109	N/A	
45 to 50 GHz	104	N/A	
Extended configura	ation and standard p	ower range (E8362/3/4B-	Option 014)
10 to 45 MHz ⁴	79	129	
45 to 500 MHz $^{\rm 5}$	94	132	
500 MHz to 2 GH	lz 119	138	
2 to 10 GHz	122	137	
10 to 20 GHz	121	136	
20 to 30 GHz	111	123)
30 to 40 GHz	107	119	Option 016 degrades
40 to 45 GHz	105	116	performance by 2 dB
45 to 50 GHz	100	111	J

The system dynamic range is calculated as the difference between the noise floor and the source maximum output power. The effective dynamic range must take measurement uncertainties and interfering signals into account.

The test port system dynamic range is calculated as the difference between the test port noise floor and the source maximum output power. The effective dynamic range must take measurement uncertainties and interfering signals into account.

^{3.} The direct receiver access input system dynamic range is calculated as the difference between the direct receiver access input noise floor and the source maximum output power. The effective dynamic range must take measurement uncertainties and interfering signals into account. This set-up should only be used

when the receiver input will never exceed its damage level. When the analyzer is in segment sweep mode, the analyzer can have pre-defined frequency segments which will output a higher power level when the extended dynamic range is required (i.e. devices with high insertion loss), and reduced power when receiver damage may occur (i.e. devices with low insertion loss). The extended range is only available in one-path transmission measurements.

^{4.} Typical performance.

May be limited to 100 dB at particular frequencies below 500 MHz due to spurious receiver residuals. Methods are available to regain the full dynamic range.

Corrected system performance continued

System dynamic range¹

Description	escription Specification (dB) Typical (dB) at direct at test port ² receiver access input ³		Supplemental information
Dynamic range			
Standard configura	ation and extended p	ower range and bias-tees	(E8362/3/4B-Option UNL)
10 to 45 MHz ⁴	79	N/A	
45 to 500 MHz ⁵	92	N/A	
500 MHz to 2 GH	z 117	N/A	
2 to 10 GHz	120	N/A	
10 to 20 GHz	121	N/A	
20 to 30 GHz	112	N/A)
30 to 40 GHz	108	N/A	Option 016 degrades
40 to 45 GHz	105	N/A	performance by 2 dB
45 to 50 GHz	99	N/A	J
Configurable test s	et and extended pov	ver range and bias-tees	
(E8362/3/4B-Opti	on UNL and Option 0	114)	
10 to 45 MHz ⁴	79	129	
45 to 500 MHz ⁵	92	130	
500 MHz to 2 GH	z 117	136	
2 to 10 GHz	120	135	
10 to 20 GHz	119	134	
20 to 30 GHz	109	121	`
30 to 40 GHz	105	117	Option 016 degrades
40 to 45 GHz	101	112	performance by 2 dB
45 to 50 GHz	95	106	J

The system dynamic range is calculated as the difference between the noise floor and the source maximum output power. The effective dynamic range must take measurement uncertainties and interfering signals into account.

The test port system dynamic range is calculated as the difference between the test port noise floor and the source maximum output power. The effective dynamic range must take measurement uncertainties and interfering signals into account.

^{3.} The direct receiver access input system dynamic range is calculated as the difference between the direct receiver access input noise floor and the source maximum output power. The effective dynamic range must take measurement uncertainties and interfering signals into account. This set-up should only be used

when the receiver input will never exceed its damage level. When the analyzer is in segment sweep mode, the analyzer can have pre-defined frequency segments which will output a higher power level when the extended dynamic range is required (i.e. devices with high insertion loss), and reduced power when receiver damage may occur (i.e. devices with low insertion loss). The extended range is only available in one-path transmission measurements.

^{4.} Typical performance.

May be limited to 100 dB at particular frequencies below 500 MHz due to spurious receiver residuals. Methods are available to regain the full dynamic range.

Receiver dynamic range¹

Description	Specification (dB) at test port ²	Typical (dB) at direct receiver access input ³	Supplemental information
Dynamic range			
_	standard power range (E8362 (E8362/3/4B-Option UNL)	2/3/4B) or standard configu	ration and extended
10 to 45 MHz ⁴	82	N/A	
45 to 500 MHz ⁵	94	N/A	
500 MHz to 2 GHz	119	N/A	
2 to 10 GHz	122	N/A	
10 to 20 GHz	125	N/A	
20 to 30 GHz	114	N/A	Option 016 degrades performance by 2 dB
30 to 40 GHz	111	N/A	Option 016 degrades performance by 2 dB
40 to 50 GHz	111	N/A	Option 016 degrades performance by 2 dB
	andard power range (E8362/3 (E8362/3/4B-Option 014 and		et and extended
10 to 45 MHz ⁴	82	132	
45 to 500 MHz ⁵	94	132	
500 MHz to 2 GHz	119	138	
2 to 10 GHz	122	137	
10 to 20 GHz	124	139	
20 to 40 GHz	113	125	Option 016 degrades performance by 2 dB
40 to 45 GHz	110	122	Option 016 degrades performance by 2 dB
45 to 50 GHz	109	120	Option 016 degrades performance by 2 dB

The receiver dynamic range is calculated as the difference between the noise floor and the receiver maximum input level. The effective dynamic range must take measurement uncertainties and interfering signals into account.

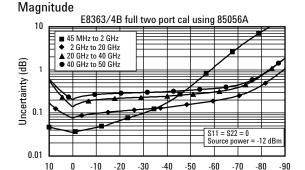
The test port receiver dynamic range is calculated as the difference between the test port noise floor and the receiver maximum input level. The effective dynamic range must take measurement uncertainties and interfering signals into account.

The direct receiver access input receiver dynamic range is calculated as the difference between the direct receiver access input noise floor and the receiver maximum input level. The effective dynamic range must take measurement uncertainties and interfering signals into account. This set-up should only be used

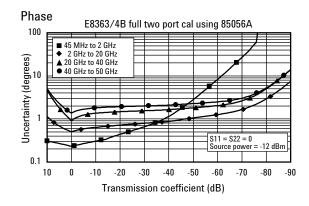
when the receiver input will never exceed its compression or damage level. When the analyzer is in segment sweep mode, the analyzer can have pre-defined frequency segments which will output a higher power level when the extended dynamic range is required (i.e. devices with high insertion loss), and reduced power when receiver compression or damage may occur (i.e. devices with low insertion loss). The extended range is only available in one-path transmission measurements.

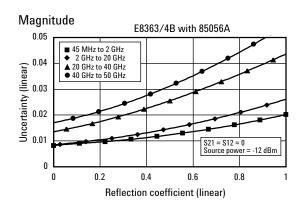
^{4.} Typical performance.

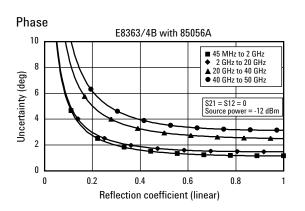
May be degraded by 10 dB at particular frequencies (multiples of 5 MHz) due to spurious receiver residuals. Methods are available to regain the full dynamic range.


Corrected system performance with 2.4 mm connectors

Standard configuration and standard power range (E8363/4B)

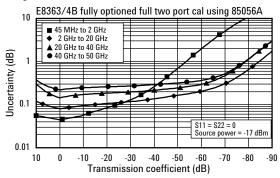

Applies to E8363/4B PNA Series analyzer, 85056A (2.4 mm) calibration kit, 85133F flexible test port cable set, and a full two-port calibration. (Specifications apply over environmental temperature of 23 °C \pm 3 °C, with less than 1 °C deviation from calibration temperature.)


Description	Specification (dB)				
	45 MHz to 2 GHz	2 to 20 GHz	20 to 40 GHz	40 to 50 GHz	
Directivity	42	42	38	36	
Source match	41	38	33	31	
Load match	42	42	37	35	
Reflection tracking	0.001	0.008	0.020	0.027	
Transmission tracking	0.01	0.049	0.105	0.17	

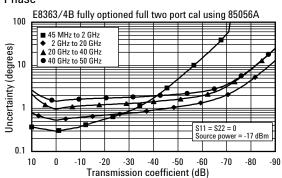

Transmission uncertainty (specifications)

Transmission coefficient (dB)

Typical performance.

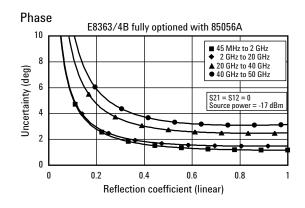

Fully Optioned (E8363/4B-Option 014/UNL/080/081/016)

Applies to E8363/4B PNA Series analyzer, 85056A (2.4 mm) calibration kit, 85133F flexible test port cable set, and a full two-port calibration. (Specifications apply over environmental temperature of 23 °C \pm 3 °C, with less than 1 °C deviation from calibration temperature.)


Description	Specification (dB)			
	45 MHz to 2 GHz	2 to 20 GHz	20 to 40 GHz	40 to 50 GHz
Directivity	42	42	38	36
Source match	41	38	33	31
Load match	42	42	37	35
Reflection tracking	0.001	0.008	0.020	0.027
Transmission tracking	0.019	0.053	0.109	0.182

Transmission uncertainty (specifications)

Magnitude

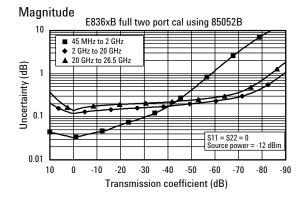


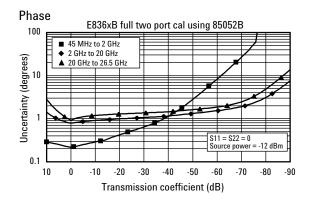
Phase

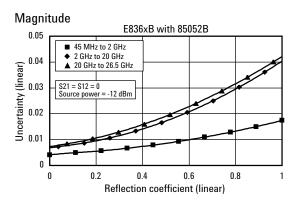
Reflection uncertainty (specifications)

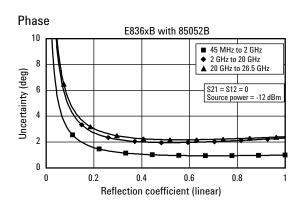
Magnitude E8363/4B fully optioned with 85056A 0.05 ■ 45 MHz to 2 GHz ◆ 2 GHz to 20 GHz ▲ 20 GHz to 40 GHz ● 40 GHz to 50 GHz Uncertainty (linear) 0.03 0.02 0.01 S21 = S12 = 0 Source power 0 0 0.2 0.4 8.0 0.6 Reflection coefficient (linear)

Typical performance.


Corrected system performance with 3.5 mm connectors

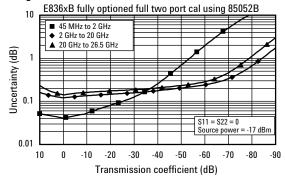

Standard configuration and standard power range (E8362B)

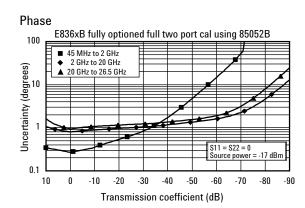

Applies to E8362B PNA Series analyzer, 85052B (3.5 mm) calibration kit, 85131F flexible test port cable set, and a full two-port calibration. (Specifications apply over environmental temperature of 23 °C ± 3 °C, with less than 1 °C deviation from calibration temperature.)

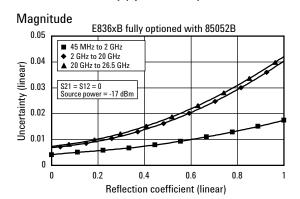

Description	Specification (dB)				
	45 MHz to 500 MHz	500 MHz to 2 GHz	2 to 8 GHz	8 to 20 GHz	
Directivity	48	44	44	44	
Source match	40	33	31	31	
Load match	48	44	44	44	
Reflection tracking	0.003	0.003	0.006	0.006	
Transmission tracking	0.009	0.047	0.088	0.104	

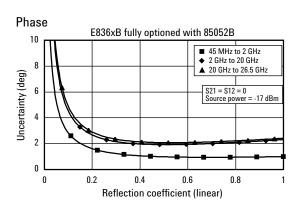
Transmission uncertainty (specifications)

^{1.} Typical performance.


Fully Optioned (E8362B-Option 014/UNL/080/081/016)


Applies to E8362B PNA Series analyzer, 85052B (3.5 mm) calibration kit, 85131F flexible test port cable set, and a full two-port calibration. (Specifications apply over environmental temperature of 23 °C ± 3 °C, with less than 1 °C deviation from calibration temperature.)


Description	Specification (dB)				
	45 MHz to 500 MHz	500 MHz to 2 GHz	2 to 8 GHz	8 to 20 GHz	
Directivity	48	44	44	44	
Source match	40	33	31	31	
Load match	48	44	44	44	
Reflection tracking	0.003	0.003	0.006	0.006	
Transmission tracking	0.009	0.047	0.088	0.104	


Transmission uncertainty (specifications)

Magnitude

Typical performance.

Uncorrected system performance 1

Directivity 10 to 45 MHz ² 45 MHz to 2 GHz 2 to 10 GHz 10 to 20 GHz 20 to 40 GHz 40 to 45 GHz 45 to 50 GHz 20 to 45 MHz ² 21 dB 22 dB 16 dB 20 to 40 GHz 16 dB 40 to 45 GHz 15 dB 45 to 50 GHz 20 to 45 MHz ² 45 MHz to 2 GHz 23 dB	Typical: 23 dB 29 dB 25 dB 20 dB 20 dB 20 dB 18 dB 18 dB Typical: 12 dB 27 dB
45 MHz to 2 GHz 24 dB 2 to 10 GHz 22 dB 10 to 20 GHz 16 dB 20 to 40 GHz 16 dB 40 to 45 GHz 15 dB 45 to 50 GHz 13 dB Source match - standard 10 to 45 MHz ² 11 dB	29 dB 25 dB 20 dB 20 dB 18 dB 18 dB Typical: 12 dB 27 dB
2 to 10 GHz 2 dB 10 to 20 GHz 16 dB 20 to 40 GHz 16 dB 40 to 45 GHz 15 dB 45 to 50 GHz 13 dB Source match - standard 10 to 45 MHz ² 11 dB	25 dB 20 dB 20 dB 18 dB 18 dB Typical: 12 dB 27 dB
10 to 20 GHz 16 dB 20 to 40 GHz 16 dB 40 to 45 GHz 15 dB 45 to 50 GHz 13 dB Source match - standard 10 to 45 MHz ² 11 dB	20 dB 20 dB 18 dB 18 dB Typical: 12 dB 27 dB
20 to 40 GHz 16 dB 40 to 45 GHz 15 dB 45 to 50 GHz 13 dB Source match - standard 10 to 45 MHz ² 11 dB	20 dB 18 dB 18 dB Typical: 12 dB 27 dB
40 to 45 GHz 15 dB 45 to 50 GHz 13 dB Source match - standard 10 to 45 MHz ² 11 dB	18 dB 18 dB Typical: 12 dB 27 dB
45 to 50 GHz 13 dB Source match - standard 10 to 45 MHz² 11 dB	18 dB Typical: 12 dB 27 dB
Source match - standard 10 to 45 MHz ² 11 dB	Typical: 12 dB 27 dB
10 to 45 MHz ² 11 dB	12 dB 27 dB
	27 dB
45 MHz to 2 GHz 23 dB	
45 WITE to 2 dit2 25 db	19 dB
2 to 10 GHz 16 dB	
10 to 20 GHz 14 dB	19 dB
20 to 40 GHz 10 dB	14 dB
40 to 45 GHz 9 dB	13.5 dB
45 to 50 GHz 7.5 dB	10 dB
Source match - Option UNL, 014, or UNL and 014	Typical:
10 to 45 MHz ² 11 dB	12 dB
45 MHz to 2 GHz 18 dB	22.5 dB
2 to 10 GHz 14 dB	18 dB
10 to 20 GHz 12 dB	15 dB
20 to 40 GHz 9 dB	11 dB
40 to 45 GHz 8 dB	13 dB
45 to 50 GHz 6 dB	9 dB
Load match - standard	Typical:
10 to 45 MHz ² 11 dB	12 dB
45 MHz to 2 GHz 23 dB	29 dB
2 to 10 GHz 14 dB	16 dB
10 to 20 GHz 10 dB	12 dB
20 GHz to 40 GHz 9 dB	12 dB
40 to 45 GHz 9 dB	13 dB
45 to 50 GHz 8 dB	10 dB
Load match - Option UNL, 014, or UNL and 014	Typical:
10 to 45 MHz ² 11 dB	12 dB
45 MHz to 2 GHz 17 dB	21.5 dB
2 to 10 GHz 13 dB	16.5 dB
10 to 20 GHz 10 dB	
	13 dB
	11 dB 13 dB
40 to 45 GHz 9 dB	
45 to 50 GHz 7 dB	9.5 dB
Reflection tracking 10 to 45 MHz ²	Typical:
	±1.5 dB
45 MHz to 20 GHz	±1.5 dB
20 to 40 GHz	±1.5 dB
40 to 50 GHz	±2.0 dB
Transmission tracking ³	Typical:
10 to 45 MHz ²	±3.0 dB
45 MHz to 2 GHz	±1.5 dB
2 to 10 GHz	±2.0 dB
10 to 20 GHz	±2.5 dB
20 to 40 GHz	±3.5 dB
40 to 45 GHz	±4.0 dB
45 to 50 GHz	±4.5 dB

^{1.} Specifications apply over environment temperature of 23 °C ± 3 °C, with less than 1 °C deviation from the calibration temperature.

2. Typical performance.

 $^{{\}it 3. \ Transmission \ tracking \ performance \ is \ strongly \ dependent \ on \ cable \ used. \ These}$ typical specifications are based on the use of an Agilent through cable, part number 85133-60016.

Uncorrected system performance ¹ *continued*

Description	Specification	Supplemental information
Crosstalk ¹ - standard		
10 to 45 MHz ²	65 dB	
45 MHz to 1 GHz	85 dB	
1 to 2 GHz	100 dB	
2 to 20 GHz	110 dB	
20 to 40 GHz	108 dB	
40 to 45 GHz	105 dB	
45 to 50 GHz	100 dB	
Crosstalk ¹ - Option UNL or 014		
10 to 45 MHz ²	65 dB	
45 MHz to 1 GHz	85 dB	
1 to 2 GHz	100 dB	
2 to 20 GHz	109 dB	
20 to 40 GHz	106 dB	
40 to 45 GHz	103 dB	
45 to 50 GHz	98 dB	
Crosstalk ¹ - Option UNL and 014		
10 to 45 MHz ²	65 dB	
45 MHz to 1 GHz	85 dB	
1 to 2 GHz	98 dB	
2 to 10 GHz	108 dB	
10 to 20 GHz	107 dB	
20 to 40 GHz	104 dB	
40 to 45 GHz	100 dB	
45 to 50 GHz	95 dB	
Crosstalk - Option 080 enabled ³		Typical:
10 to 45 MHz ²		65 dB
45 MHz to 1 GHz		85 dB
1 to 2 GHz		100 dB
2 to 10 GHz		109 dB
10 to 20 GHz		110 dB
20 to 40 GHz		106 dB
40 to 45 GHz		103 dB
45 to 50 GHz		98 dB

^{1.} Measurement conditions: Normalized to a thru, measured with two shorts, 10 Hz IF bandwidth, averaging factor of 8, alternate mode, source power set to the lesser of the maximum power out or the maximum receiver power.

Typical performance.
 0 Hz offset.

Test port output¹

Description		Specification			Supplemental information
	Standard	014	UNL	UNL and 014	
Frequency range					
E8362B		——— 10 MHz to 20 0	GHz		
E8363B	ļ	——— 10 MHz to 40 (GHz ———	i	
E8364B		——— 10 MHz to 50 (GHz		
Nominal power ²				·	
E8362B	0 dBm	-5 dBm	-5 dBm	-5 dBm	
E8363/4B	-12 dBm	-17 dBm	-17 dBm	-17 dBm	
Frequency resolution		1 Hz	1 Hz	1 Hz	
CW accuracy	± 1ppm	± 1ppm	± 1ppm	± 1ppm	
Frequency stability	± 199111	± 199111	± τρριιι	± 199111	±1 ppm, 0 to 40 °C, typical
Trequency stability					±0.2 ppm/yr, typical
Power level accuracy					±0.2 ppiii/ yi, typicai
10 to 45 MHz ³	±2.0 dB	±2.0 dB	±2.0 dB	±2.0 dB	
45 MHz to 10 GHz	±1.5 dB	±1.5 dB	±1.5 dB	±1.5 dB	Variation from nominal
10 to 20 GHz	±2.0 dB	±2.0 dB	±2.0 dB	±2.0 dB	power in range 0
20 to 40 GHz	±3.0 dB	±3.0 dB	±3.0 dB	±3.0 dB	(step attenuator at 0 dB).
40 to 45 GHz	±3.0 dB	±3.5 dB	±3.0 dB	±3.5 dB	(
45 to 50 GHz	±3.0 dB	±4.0 dB	±3.0 dB	±4.0 dB	
Power level linearity					
10 to 45 MHz ³	±1.0 dB ⁴	±1.0 dB ⁴	±1.0 dB ⁴	±1.0 dB ⁴	
45 MHz to 20 GHz	±1.0 dB ⁴	±1.0 dB ⁴	±1.0 dB ⁴	±1.0 dB ⁴	Test reference is at the
20 to 40 GHz	±1.0 dB ⁴	±1.0 dB ⁴	±1.0 dB ⁴	±1.0 dB ⁴	nominal power level
40 to 50 GHz	±1.0 dB	±1.0 dB	±1.0 dB	±1.0 dB	(step attenuator at 0 dB).
Power range ⁵					
10 to 45 MHz ³	-25 to +2 dB	-25 to +2 dBm	-87 to +2 dBm	-87 to +2 dBm	
45 MHz to 10 GHz	-25 to +5 dB	-25 to +5 dBm	-87 to +3 dBm	-87 to +3 dBm	
10 to 20 GHz	-24 to +3 dB	-25 to +2 dBm	-86 to +1 dBm	-87 to 0 dBm	
20 to 30 GHz	-23 to 0 dBm	-25 to -2 dBm	-85 to -2 dBm	-87 to -4 dBm	
30 to 40 GHz	-23 to -4 dBm	-25 to - 6 dBm	-85 to -6 dBm	-87 to -8 dBm	
40 to 45 GHz	-25 to -5 dBm	-27 to -7 dBm	-87 to -9 dBm	-87 to -11 dBm	
45 to 50 GHz	-25 to -10 dBm	-27 to -12 dBm	-87 to -15 dBm	-87 to -17 dBm	
Power sweep range (
10 to 45 MHz ³	27 dB	27 dB	27 dB	27 dB	
45 MHz to 10 GHz	30 dB	30 dB	30 dB	30 dB	ALC range starts at
10 to 20 GHz	27 dB	27 dB	27 dB	27 dB	maximum leveled output
20 to 30 GHz	23 dB	23 dB	23 dB	23 dB	power and decreases by
30 to 40 GHz	19 dB	19 dB	19 dB	19 dB	power level indicated in
40 to 45 GHz	20 dB	20 dB	18 dB	16 dB	the table.
45 to 50 GHz	15 dB	15 dB	12 dB	10 dB	
Power resolution	0.01 dB	0.01 dB	0.01 dB	0.01 dB	

Source output performance on port 1 only. Port 2 output performance is typical, except for power level accuracy which is characteristic.

Preset power.

^{3.} Typical performance.

^{4.} ± 1.5 dB for power \leq -23 dBm.

^{5.} Power to which the source can be set and phase lock is assured.

Test port output¹ continued

Description	Specification	Supplemental information
Phase noise (10 kHz offset	from center frequency, nominal power at test port)	
10 to 45 MHz ²		-70 dBc typical
45 MHz to 10 GHz		-70 dBc typical
10 to 20 GHz		-65 dBc typical
20 to 40 GHz		-55 dBc typical
40 to 50 GHz		-55 dBc typical
Phase noise (10 kHz offset	from center frequency, nominal power at test port) – Optio	on 080 enabled
10 to 45 MHz ²		-70 dBc typical
45 MHz to 10 GHz		-70 dBc typical
10 to 20 GHz		-65 dBc typical
20 to 40 GHz		-55 dBc typical
40 to 50 GHz		-55 dBc typical
Phase noise (100 kHz offset	t from center frequency, nominal power at test port)	
10 to 10 GHz	, , , , , , , , , , , , , , , , , , , ,	-60 dBc
10 GHz to 20 GHz		-55 dBc
20 GHz to 50 GHz		-50 dBc
Phase noise (100 kHz offset	t from center frequency, nominal power at test port) – Opti	ion 080 enabled
10 to 10 GHz		-75 dBc
10 GHz to 20 GHz		-70 dBc
20 GHz to 50 GHz		-65 dBc
Phase noise (1 MHz offset f	from center frequency, nominal power at test port)	
10 to 10 GHz	, , , , , , , , , , , , , , , , , , , ,	-106 dBc
10 GHz to 20 GHz		-103 dBc
20 GHz to 50 GHz		-90 dBc
Phase noise (1 MHz offset f	from center frequency, nominal power at test port) – Optio	n 080 enabled
10 to 10 GHz		-103 dBc
10 GHz to 20 GHz		-97 dBc
20 GHz to 50 GHz		-85 dBc
Harmonics (2nd or 3rd)		-23 dBc typical, in power range 0
Non-harmonic spurious (at	t nominal output power)	3.00
10 to 45 MHz ²		-50 dBc typical, for offset
		frequency > 1 kHz
45 MHz to 20 GHz		-50 dBc typical, for offset
		frequency > 1 kHz
20 to 40 GHz		-30 dBc typical, for offset
		frequency > 1 kHz
40 to 50 GHz		-30 dBc typical, for offset
40 to 50 dil2		frequency > 1 kHz

^{1.} Source output performance on port 1 only. Port 2 output performance is typical, except for power level accuracy which is characteristic.

2. Typical performance.

Test port input

Description		Specific	ation		Supplemental information
	Standard	014	UNL	UNL and 014	
Test port noise floor ¹					
10 Hz IF bandwidth					
10 to 45 MHz ²	< -77 dBm	< -77 dBm	< -77 dBm	< -77 dBm	
45 to 500 MHz ³	< -89 dBm	< -89 dBm	< -89 dBm	< -89 dBm	
500 MHz to 2 GHz	< -114 dBm	< -114 dBm	< -114 dBm	< -114 dBm	
2 to 10 GHz	< -117 dBm	< -117 dBm	< -117 dBm	< -117 dBm	
10 to 20 GHz	< -120 dBm	< -119 dBm	< -120 dBm	< -119 dBm	
20 to 40 GHz	< -114 dBm	< -113 dBm	< -114 dBm	< -113 dBm	Option 016 degrades performance by 2 dE
40 to 50 GHz	< -114 dBm	< -112 dBm	< -114 dBm	< -112 dBm	Option 016 degrades performance by 2 dE
1 kHz IF bandwidth					
10 to 45 MHz ²	< -57 dBm	< -57 dBm	< -57 dBm	< -57 dBm	
45 to 500 MHz ³	< -69 dBm	< -69 dBm	< -69 dBm	< -69 dBm	
500 MHz to 2 GHz	< -94 dBm	< -94 dBm	< -94 dBm	< -94 dBm	
2 to 10 GHz	< -97 dBm	< -97 dBm	< -97 dBm	< -97 dBm	
10 to 20 GHz	< -100 dBm	< -99 dBm	< -100 dBm	< -99 dBm	
20 to 40 GHz	< -94 dBm	< -93 dBm	< -94 dBm	< -93 dBm	Option 016 degrades performance by 2 dE
40 to 50 GHz	< -94 dBm	< -92 dBm	< -94 dBm	< -92 dBm	Option 016 degrades performance by 2 de
Test port noise floor ^{1,2} -	Option 080 ena	bled ⁴			
10 Hz IF bandwidth	77.10	77.10	77.10	77 10	
10 to 45 MHz ²	< -77 dBm	< -77 dBm	< -77 dBm	< -77 dBm	
45 to 500 MHz ³	< -88 dBm	< -88 dBm	< -88 dBm	< -88 dBm	
500 MHz to 2 GHz	< -113 dBm	< -113 dBm	< -113 dBm	< -113 dBm	
2 to 10 GHz	< -116 dBm	< -116 dBm	< -116 dBm	< -116 dBm	
10 to 20 GHz	< -118 dBm	< -118 dBm	< -118 dBm	< -118 dBm	
20 to 40 GHz	< -112 dBm	< -112 dBm	< -112 dBm	< -112 dBm	Option 016 degrades performance by 2 de
40 to 50 GHz	< -111 dBm	< -111 dBm	< -111 dBm	< -111 dBm	Option 016 degrades performance by 2 de
1 kHz IF bandwidth	57.10	E7 ID	57.10	E7 ID	
10 to 45 MHz ²	< -57 dBm	< -57 dBm	< -57 dBm	< -57 dBm	
45 to 500 MHz ³	< -68 dBm	< -68 dBm	< -68 dBm	< -68 dBm	
500 MHz to 2 GHz	< -93 dBm	< -93 dBm	< -93 dBm	< -93 dBm	
2 to 10 GHz	< -96 dBm	< -96 dBm	< -96 dBm	< -96 dBm	
10 to 20 GHz	< -98 dBm	< -98 dBm	< -98 dBm	< -98 dBm	
20 to 40 GHz	< -92 dBm	< -92 dBm	< -92 dBm	< -92 dBm	Option 016 degrades performance by 2 de
40 to 50 GHz	< -91 dBm	< -91 dBm	< -91 dBm	< -91 dBm	Option 016 degrades performance by 2 di
Direct receiver access in	nput noise floor	1,2			
10 Hz IF bandwidth		. 107 ID		. 107 ID	
10 to 45 MHz		< -127 dBm		< -127 dBm	
45 to 500 MHz		< -127 dBm		< -127 dBm	
500 MHz to 2 GHz		< -133 dBm		< -133 dBm	
2 to 10 GHz		< -132 dBm		< -132 dBm	
10 to 20 GHz		< -134 dBm		< -134 dBm	0-4: 010
20 to 40 GHz		< -125 dBm		< -125 dBm	Option 016 degrades performance by 2 df
40 to 50 GHz		< -123 dBm		< -123 dBm	Option 016 degrades performance by 2 di
1 kHz IF bandwidth		. 107 ID		. 107 ID	
10 to 45 MHz		< -107 dBm		< -107 dBm	
45 to 500 MHz		< -107 dBm		< -107 dBm	
500 MHz to 2 GHz		< -113 dBm		< -113 dBm	
2 to 10 GHz		< -112 dBm		< -112 dBm	
10 to 20 GHz		< -114 dBm		< -114 dBm	Ontion 010 degreeds
20 to 40 GHz		< -105 dBm		< -105 dBm	Option 016 degrades performance by 2 de
40 to 50 GHz		< -103 dBm		< -103 dBm	Option 016 degrades performance by 2 dE

^{1.} Total average (rms) noise power calculated as mean value of a linear magnitude trace expressed in dBm.

2. Typical performance.

^{3.} Noise floor may be degraded by 10 dB at particular frequencies (multiples of 5 MHz) due to spurious receiver residuals.

^{4. 0} Hz offset.

Test port input continued

Description	Specification		Supplemental information
	Standard, 014, UNL	UNL and 014	
Direct receiver access input noise	e floor ^{1,2} - Option 080 enabled ⁴		
10 Hz IF bandwidth			
10 to 45 MHz	< -127 dBm	< -127 dBm	
45 to 500 MHz ³	< -126 dBm	< -126 dBm	
500 MHz to 2 GHz	< -132 dBm	< -132 dBm	
2 to 10 GHz	< -131 dBm	< -131 dBm	
10 to 20 GHz	< -133 dBm	< -133 dBm	
20 to 40 GHz	< -124 dBm	< -124 dBm	Option 016 degrades performance by 2 dB
40 to 50 GHz	< -122 dBm	< -122 dBm	Option 016 degrades performance by 2 dB
1 kHz IF bandwidth			
10 to 45 MHz	< -107 dBm	< -107 dBm	
45 to 500 MHz ³	< -106 dBm	< -106 dBm	
500 MHz to 2 GHz	< -112 dBm	< -112 dBm	
2 to 10 GHz	< -111 dBm	< -111 dBm	
10 to 20 GHz	< -113 dBm	< -113 dBm	
20 to 40 GHz	< -104 dBm	< -104 dBm	Option 016 degrades performance by 2 dB
40 to 50 GHz	< -102 dBm	< -102 dBm	Option 016 degrades performance by 2 dB
Receiver compression level			
10 to 100 MHz ⁴ ⊢	< 0.45 dB compression at +5	dBm ———	
100 MHz to 200 MHz ⁴ ├──	< 0.45 dB compression at +5	dBm ———	
200 MHz to 20 GHz ⁴ ⊢	< 0.45 dB compression at +5	dBm ———	
20 to 30 GHz	< 0.45 dB compression at 0 dl	Bm ———	
30 to 40 GHz	< 0.45 dB compression at -3 d	IBm ———	
40 to 50 GHz ⊢	< 0.45 dB compression at -3 d	IBm ———	
System compression level	max output power		See dynamic accuracy chart
Third order intercept – Tone spaci	ng from 100 kHz – 5 MHz		
			Typical:
10 to 500 MHz			+33 dBm
500 MHz to 20 GHz			+24 dBm
20 to 40 GHz			+18 dBm
40 to 50 GHz			+15 dBm
Third order intercept – Tone spaci	ng from 5 MHz – 20 MHz		
			Typical:
10 to 500 MHz			+20 dBm
500 MHz to 20 GHz			+20 dBm
20 to 40 GHz			+16 dBm
40 to 50 GHz			+15 dBm
Third order intercept – Tone spaci	ng from 20 MHz – 50 MHz		
			Typical:
10 to 500 MHz			+26 dBm
500 MHz to 20 GHz			+26 dBm
20 to 40 GHz			+20 dBm
40 to 50 GHz			+19 dBm

Total average (rms) noise power calculated as mean value of a linear magnitude trace expressed in dBm.

^{2.} Typical performance.

^{3.} Noise floor may be degraded by 10 dB at particular frequencies (multiples of 5 MHz) due to spurious receiver residuals.

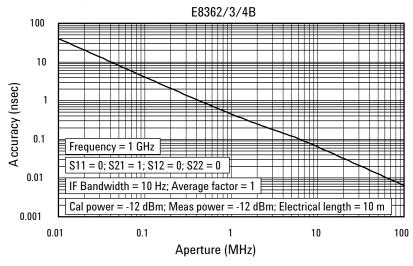
Below 800 MHz the coupling factor rolls off 20 dB per decade causing a shift in the dynamic accuracy curves. Please see the Uncertainty Calculator (http://www.agilent.com/find/na_calculator) for detailed compression values.

Test port input continued

Description		Specification			Supplemental information
	Standard	014	UNL	UNL and 014	
Trace noise magnitude					
10 to 45 MHz ¹		< 0.050 dB rms			
45 to 500 MHz		< 0.010 dB rms			1 kHz IF bandwidth
500 MHz to 20 GHz		< 0.006 dB rms			Ratio measurement, nominal
20 to 40 GHz		< 0.006 dB rms			power at test port
40 to 50 GHz		< 0.006 dB rms			
Trace noise magnitude -					
10 to 45 MHz		< 0.060 dB rms			
45 to 500 MHz		< 0.010 dB rms			1 kHz IF bandwidth
500 MHz to 20 GHz		< 0.006 dB rms			Ratio measurement, nominal
20 to 40 GHz		< 0.007 dB rms			power at test port
40 to 50 GHz		< 0.008 dB rms			
Trace noise phase					
10 to 45 MHz ¹		< 0.350° rms -		l	
45 to 500 MHz ²		< 0.100° rms -			1 kHz IF bandwidth
500 MHz to 20 GHz					Ratio measurement, nominal
20 to 40 GHz		< 0.100° rms -			power at test port
40 to 50 GHz	<u> </u>	—— < 0.100° rms —			
Trace noise phase – Opti					
10 to 45 MHz		< 0.350° rms			
45 to 500 MHz		< 0.100° rms -			1 kHz IF bandwidth
500 MHz to 20 GHz					Ratio measurement, nominal
20 to 40 GHz		< 0.100° rms			power at test port
40 to 50 GHz		——— < 0.100° rms —			
Reference level magnitu	de				
Range	±200 dB	±200 dB	±200 dB	±200 dB	
Resolution	0.001 dB	0.001 dB	0.001 dB	0.001 dB	
Reference level phase					
Range	±500°	±500°	±500°	±500°	
Resolution	0.01°	0.01°	0.01°	0.01°	
Stability magnitude ³					Typical ratio measurement:
					Measured at the test port
10 to 45 MHz					±0.05 dB/°C
45 MHz to 20 GHz					±0.02 dB/°C
20 to 40 GHz					±0.03 dB/°C
40 to 50 GHz					±0.04 dB/°C
Stability phase ³					Typical ratio measurement:
					Measured at the test port
10 to 45 MHz					±0.5°/°C
45 MHz to 20 GHz					±0.2°/°C
20 to 40 GHz					±0.5°/°C
40 to 50 GHz					±0.8°/°C
Damage input level					
Test port 1 and 2					20 dBm or ±40 VDC, typical
R1, R2 in					15 dBm or ±15 VDC, typical
A, B in					15 dBm or ±15 VDC, typical
Coupler thru (Option 0	14 or UNL and	014)			30 dBm or ±40 VDC, typical
Coupler arm (Option 0	14 or UNL and	014)			30 dBm or ±7 VDC, typical

Typical performance.
 Trace noise magnitude may be degraded to 20 mdB rms at harmonic frequencies of the first IF (8.33 MHz) below 80 MHz.

^{3.} Stability is defined as a ratio measurement measured at the test port.


^{4. 0} Hz offset.

Group delay¹

Description	Specification	Supplemental information
Aperture (selectable)	(frequency span)/(number of points -1)	
Maximum aperture	20% of frequency span	
Range	0.5 x (1/minimum aperture)	
Maximum delay		Limited to measuring no more than 180° of
		phase change within the minimum aperture.

The following graph shows characteristic group delay accuracy with type-N full 2-port calibration and a $10~{\rm Hz}$ IF bandwidth. Insertion loss is assumed to be less than $2~{\rm dB}$ and electrical length to be $10~{\rm m}$.

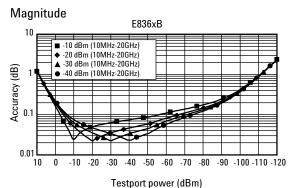
Group delay (typical)

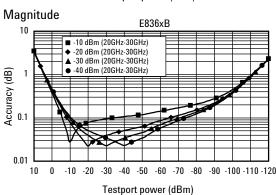
In general, the following formula can be used to determine the accuracy, in seconds, of a specific group delay measurement:

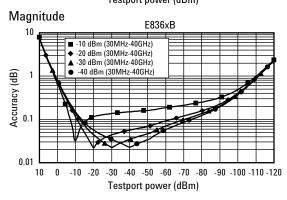
±Phase accuracy (deg)/[360 x Aperture (Hz)]

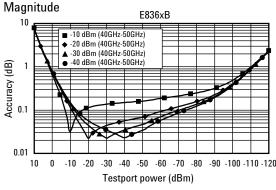
Depending on the aperture and device length, the phase accuracy used is either incremental phase accuracy or worse case phase accuracy.

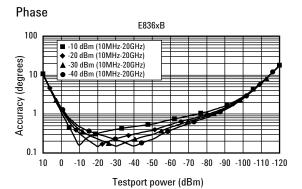
Group delay is computed by measuring the phase change within a specified frequency step (determined by the frequency span and the number of points per sweep).

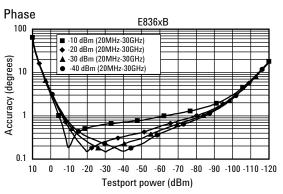

Test port input continued

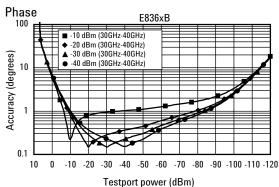

Dynamic accuracy

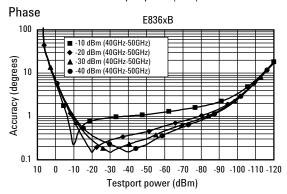

Applies to input ports 1 and 2, accuracy of the test port input power reading relative to the reference


input power level. Also applies to the following conditions:


• IF bandwidth = 10 H







Corrected system performance

The specifications in this section apply for measurements made with the Agilent E8361A PNA Series microwave network analyzer with the following conditions:

- 10 Hz IF bandwidth
- · no averaging applied to data

System dynamic range¹

Description	Specification (dB) at test port ²	Typical (dB) at direct receiver access input ³
Dynamic range		
Standard configuration (E	8361A)	
10 to 45 MHz ⁴	63	N/A
45 to 500 MHz ⁵	87	N/A
500 MHz to 2 GHz	112	N/A
2 to 10 GHz	112	N/A
10 to 24 GHz	117	N/A
24 to 30 GHz	106	N/A
30 to 40 GHz	104	N/A
40 to 45 GHz	98	N/A
45 to 50 GHz	100	N/A
50 to 60 GHz	97	N/A
60 to 67 GHz	94	N/A
67 to 70 GHz ⁴	94	N/A
Configurable test set (E83	361A - Option 014 or Option 01	4 and 080)
10 to 45 MHz ⁴	63	99
45 to 500 MHz ⁵	87	102
500 MHz to 2 GHz	112	125.5
2 to 10 GHz	112	125
10 to 24 GHz	115	128
24 to 30 GHz	104	117.5
30 to 40 GHz	102	115
40 to 45 GHz	96	109
45 to 50 GHz	98	110.5
50 to 60 GHz	95	107.5
60 to 67 GHz	90	101
67 to 70 GHz ⁴	90	100

The system dynamic range is calculated as the difference between the noise floor and the source maximum output power. The effective dynamic range must take measurement uncertainties and interfering signals into account, as well as the insertion loss resulting from a thru cable connected between port 1 and port 2.

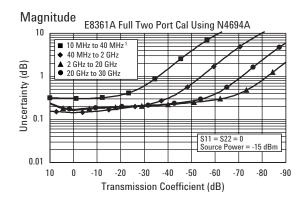
The test port system dynamic range is calculated as the difference between the test port noise floor and the source maximum output power. The effective dynamic range must take measurement uncertainties and interfering signals into account, as well as the insertion loss resulting from a thru cable connected between port 1 and port 2.

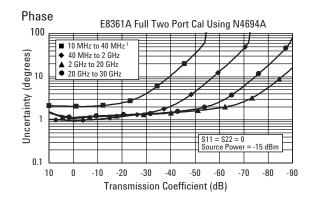
^{3.} The direct receiver access input system dynamic range is calculated as the difference between the direct receiver access input noise floor and the source

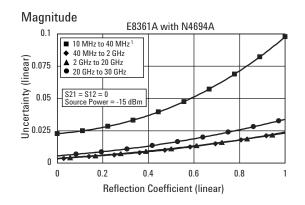
maximum output power. The effective dynamic range must take measurement uncertainties and interfering signals into account. This set-up should only be used when the receiver input will never exceed its damage level. When the analyzer is in segment sweep mode, the analyzer can have pre-defined frequency segments which will output a higher power level when the extended dynamic range is required (i.e. devices with high insertion loss), and reduced power when receiver damage may occur (i.e. devices with low insertion loss). The extended range is only available in one-path transmission measurements.

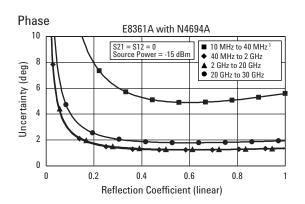
^{4.} Typical performance.

May be limited to 100 dB at particular frequencies below 500 MHz due to spurious receiver residuals. Methods are available to regain the full dynamic range.


Corrected system performance with 1.85 mm connectors

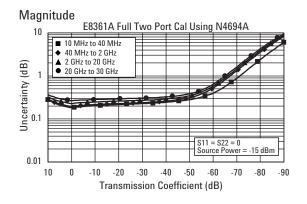

Standard configuration and standard power range

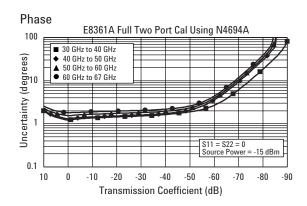

Applies to E8361A PNA Series analyzer, N4694A (1.85 mm) electronic calibration kit, 85133F flexible test port cable set, and a full two-port calibration. (Specifications apply over environmental temperature of 23 °C ± 3 °C, with less than 1 °C deviation from calibration temperature.)

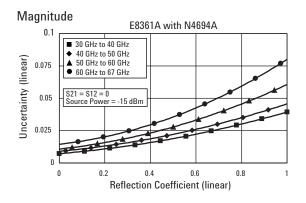

Description	Specification (dB)				
	10 MHz to 40 MHz	40 MHz to 2 GHz	2 to 20 GHz	20 to 30 GHz	
Directivity	33	50	50	46	
Source match	38	39	34	27	
Load match	39	40	37	34	
Reflection tracking	0.04	0.04	0.06	0.09	
Transmission tracking	0.105	0.135	0.15	0.216	

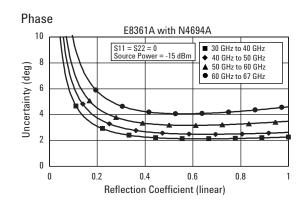
Transmission uncertainty (specifications)

Typical performance.

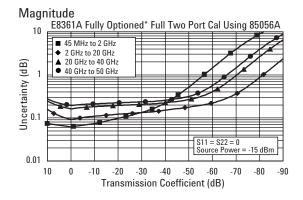

Corrected system performance with 1.85 mm connectors continued

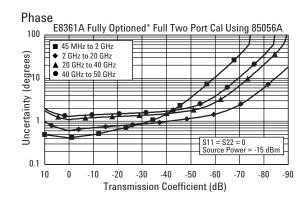

Standard configuration and standard power range (E8361A)

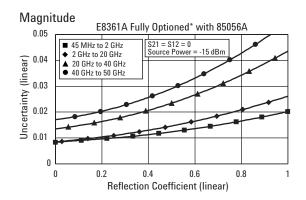

Applies to E8361A PNA Series analyzer, N4694A (1.85 mm) electronic calibration kit, 85133F flexible test port cable set, and a full two-port calibration. (Specifications apply over environmental temperature of 23 °C ± 3 °C, with less than 1 °C deviation from calibration temperature.)

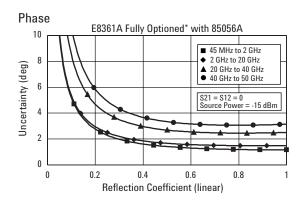

Description	Specification (dB)			
	30 GHz to 40 GHz	40 to 50 GHz	50 to 60 GHz	60 to 67 GHz
Directivity	44	42	41	38
Source match	38	39	34	27
Load match	39	40	37	34
Reflection tracking	0.04	0.04	0.06	0.09
Transmission tracking	0.105	0.135	0.15	0.216

Transmission uncertainty (specifications)

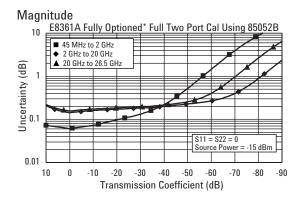

Corrected system performance with 2.4 mm connectors

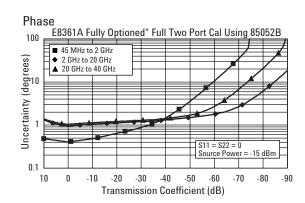

Fully optioned (E8361A)

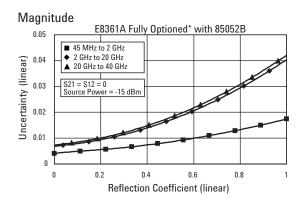

Applies to E8361A PNA Series analyzer, 85056A (2.4 mm) calibration kit, 85133F flexible test port cable set, and a full two-port calibration. (Specifications apply over environmental temperature of 23 °C \pm 3 °C, with less than 1 °C deviation from calibration temperature.)

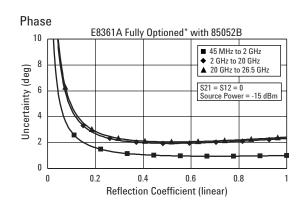

Description	Specification (dB)				
	45 MHz to 2 GHz	2 to 20 GHz	20 to 40 GHz	40 to 50 GHz	
Directivity	42	42	38	36	
Source match	41	38	33	31	
Load match	42	41	37	35	
Reflection tracking	0.001	0.054	0.133	0.18	
Transmission tracking	0.05	0.074	0.149	0.22	

Transmission uncertainty (specifications)


Corrected system performance with 3.5 mm connectors


Fully optioned (E8361A)


Applies to E8361A PNA Series analyzer, 85052B (3.5 mm) calibration kit, 85133F flexible test port cable set, and a full two-port calibration. (Specifications apply over environmental temperature of 23 °C ±3 °C, with less than 1 °C deviation from calibration temperature.)


Description	Specification (dB)			
	45 MHz to 2 GHz	2 to 20 GHz	20 to 26.5 GHz	
Directivity	48	44	44	
Source match	40	31	31	
Load match	48	44	44	
Reflection tracking	0.003	0.006	0.006	
Transmission tracking	0.053	0.136	0.147	

Transmission uncertainty (specifications)

E8361A Uncorrected system performance 1

Description	Specification	Typical
Directivity		
10 to 45 MHz ²	22 dB	22 dB
45 MHz to 2 GHz	24 dB	27 dB
2 to 10 GHz	20 dB	24 dB
10 to 20 GHz	16 dB	20 dB
20 to 30 GHz	14 dB	17 dB
30 to 50 GHz	13 dB	17 dB
50 to 60 GHz	13 dB	17 dB
60 to 67 GHz	10 dB	18 dB
67 to 70 GHz ²	14 dB	14 dB
Source match - standard		
10 to 45 MHz ²	7 dB	7 dB
45 MHz to 2 GHz	18 dB	23 dB
2 to 10 GHz	14 dB	18 dB
10 to 20 GHz	12 dB	15 dB
20 to 30 GHz	8 dB	11.5 dB
30 to 40 GHz	7.5 dB	10 dB
40 to 45 GHz	8 dB	11 dB
45 to 50 GHz	7 dB	10 dB
50 to 60 GHz	6 dB	8.5 dB
60 to 67 GHz	5.5 dB	7.5 dB
67 to 70 GHz ²	7.5 dB	7.5 dB
Source match - Option 014	7.10	7.10
10 to 45 MHz ²	7 dB	7 dB
45 MHz to 2 GHz	17 dB	21 dB
2 to 10 GHz	12 dB	17 dB
10 to 20 GHz	11 dB	14 dB
20 to 30 GHz	10 dB	13 dB
30 to 40 GHz	8.5 dB	11 dB
40 to 45 GHz	8.5 dB	11 dB
45 to 50 GHz 50 to 60 GHz	8.5 dB	11.5 dB 9 dB
60 to 67 GHz	6.5 dB 6 dB	8.5 dB
67 to 70 GHz ²	8.5 dB	8.5 dB
Load match - standard	0.5 dB	0.5 dD
10 to 45 MHz ²	5.5 dB	5.5 dB
45 MHz to 2 GHz	9 dB	10 dB
2 to 10 GHz	9 dB	11 dB
10 to 20 GHz	8.5 dB	10 dB
20 to 30 GHz	7 dB	9 dB
30 to 40 GHz	6 dB	8 dB
40 to 45 GHz	6.5 dB	9 dB
45 to 50 GHz	6.5 dB	8.5 dB
50 to 60 GHz	5.5 dB	7.5 dB
60 to 67 GHz	5.5 dB	7.5 dB
67 to 70 GHz ²	5 dB	5 dB
Load match - Option 014		
10 to 45 MHz ²	5.5 dB	5.5 dB
45 MHz to 2 GHz	8.5 dB	10 dB
2 to 10 GHz	8 dB	10 dB
10 to 20 GHz	8 dB	10 dB
20 to 30 GHz	7.5 dB	10 dB
30 to 40 GHz	7 dB	9.5 dB
40 to 45 GHz	7.5 dB	9.5 dB
45 to 50 GHz	7.5 dB	10 dB
50 to 60 GHz	6 dB	8.5 dB
60 to 67 GHZ	6 dB	8.5 dB
67 to 70 GHz ²	5 dB	5 dB

Specifications apply over environment temperature of 23 °C ± 3 °C, with less than 1 °C deviation from the calibration temperature.
 Typical performance.

Uncorrected system performance ¹ *continued*

Description	Specification	Supplemental information
Reflection tracking	-	Typical:
10 to 45 MHz ²		±1.5 dB
45 MHz to 20 GHz		±1.5 dB
20 to 40 GHz		±2.0 dB
40 to 50 GHz		±2.0 dB
50 to 67 GHz		±3.0 dB
67 to 70 GHz ²		±4.5 dB
Transmission tracking ³		Typical:
10 to 45 MHz ²		±1.5 dB
45 MHz to 20 GHz		±1.5 dB
20 to 40 GHz		±2.0 dB
40 to 50 GHz		±2.0 dB
50 to 67 GHz		±3.0 dB
67 to 70 GHz ²		±4.5 dB
Crosstalk ⁴ - standard		
10 to 45 MHz ²	63 dB	
45 to 500 MHz	87 dB	
500 MHz to 2 GHz	110 dB	
2 to 10 GHz	105 dB	
10 to 24 GHz	111 dB	
24 to 30 GHz	106 dB	
30 to 40 GHz	104 dB	
40 to 45 GHz	98 dB	
45 to 50 GHz	100 dB	
50 to 60 GHz	97 dB	
60 to 67 GHz	94 dB	
67 to 70 GHz ²	94 dB	
Crosstalk ⁴ - Option 014		
10 to 45 MHz ²	63 dB	
45 to 500 MHz	87 dB	
500 MHZ to 2 GHz	110 dB	
2 to 10 GHz	105 dB	
10 to 24 GHz	111 dB	
24 to 30 GHz	104 dB	
30 to 40 GHz	102 dB	
40 to 45 GHz	96 dB	
45 to 50 GHz	98 dB	
50 to 60 GHz	95 dB	
60 to 67 GHz	90 dB	
67 to 70 GHz ²	90 dB	
Crosstalk - Option 014 with 080 enabled ⁵		Typical:
10 to 45 MHz ²		63 dB
45 to 500 MHz		87 dB
500 MHz to 2 GHz		110 dB
2 to 10 GHz		105 dB
10 to 24 GHz		111 dB
24 to 30 GHz		104 dB
30 to 40 GHz		102 dB
40 to 45 GHz		96 dB
45 to 50 GHz		98 dB
50 to 60 GHz		95 dB
60 to 67 GHz		90 dB
67 to 70 GHz ²		90 dB

^{1.} Specifications apply over environment temperature of 23 °C \pm 3 °C, with less than 1 °C deviation from the calibration temperature.

^{2.} Typical performance.

 $^{{\}it 3. \ Transmission \ tracking \ performance \ noted \ here \ is \ normalized \ to \ the \ insertion \ loss}$ characteristcs of the cable used, so that the indicated performance is independent of cable used.

^{4.} Measurement conditions: Normalized to a thru, measured with two shorts, 10-Hz IF bandwidth, averaging factor of 8, alternate mode, source power set to the lesser of the maximum power out or the maximum receiver power. 5. 0 Hz offset.

Test port output

Description	Specification		Supplemental
•	Standard	Option 014	information
Frequency range			
E8361A	10 MHz to 67 GHz (Opera	ation up to 70 GHz)	
Nominal power	-15 dBm	-15 dBm	
Frequency resolution	1 Hz	1 Hz	
CW accuracy	± 1ppm	± 1ppm	
Frequency stability	pp	pp	±1 ppm 0 to 40 °C, typical ±0.2 ppm/yr, typical
Power level accuracy 1			11 3 7 3 11 3
10 to 45 MHz ²	±1.5 dB	±1.5 dB	
45 MHz to 10 GHz	±1.5 dB	±1.5 dB	Variation from nominal
10 to 20 GHz	±1.5 dB	±1.5 dB	power in range 0
20 to 40 GHz	±2.0 dB	±2.0 dB	
40 to 45 GHz	±3.0 dB	±3.0 dB	
45 to 50 GHz	±3.5 dB	±3.5 dB	
50 to 67 GHz	±4.0 dB	±4.0 dB	
67 to 70 GHz ²	±4.0 dB	±4.0 dB	
Power level linearity ³			
10 to 45 MHz ²	±1.0 dB ⁴ *	±1.5 dB*	*For power < -5 dBm
45 MHz to 67 GHz	±1.0 dB ^{4*}	±1.0 dB*	Test reference is at the
67 to 70 GHz ²	±1.0 dB ^{4*}	±1.0 dB*	nominal power level
Power range ^{1,5}			
10 to 45 MHz ²	-25 to -7 dBm	-25 to -7 dBm	
45 to 500 MHz	-25 to -3 dBm	-27 to -3 dBm	
500 to 750 MHz	-25 to -0 dBm	-25 to -0 dBm	
750 MHz to 10 GHz	-27 to 0 dBm	-27 to 0 dBm	
10 to 30 GHz	-27 to +1 dBm	-27 to 0 dBm	
30 to 40 GHz	-27 to -1 dBm	-27 to -2 dBm	
40 to 45 GHz	-27 to -5 dBm	-27 to -6 dBm	
45 to 50 GHz	-27 to -1 dBm	-27 to -2 dBm	
50 to 60 GHz	-27 to -3 dBm	-27 to -4 dBm	
60 to 67 GHz	-27 to -5 dBm	-27 to -7 dBm	
67 to 70 GHz ²	-27 to -5 dBm	-27 to -7 dBm	
Power sweep range (ALC	•		
10 to 45 MHz ²	18 dB	18 dB	
45 to 500 MHz	22 dB	22 dB	ALC range starts at
500 to 750 MHz	25 dB	25 dB	maximum leveled output
750 MHz to 10 GHz	27 dB	27 dB	power and goes down to
10 to 30 GHz	28 dB	27 dB	power level indicated by
30 to 40 GHz	26 dB	25 dB	dB amount specified
40 to 45 GHz	22 dB	21 dB	
45 to 50 GHz	26 dB	25 dB	
50 to 60 GHz	24 dB	23 dB	
60 to 67 GHz	22 dB	20 dB	
67 to 70 GHz ²	22 dB	20 dB	
Power resolution	0.01 dB	0.01 dB	

^{1.} Performance specified on port 1 only. Port 2 output performance is a characteristic.

^{2.} Typical performance.

^{3.} Power Level Linearity specified on Port 1 only; port 2 performance is typical.

^{4.} ± 1.6 dB for power \geq -5 dBm.

^{5.} Power to which the source can be set and phase lock is assured. Test port power is specified into nominal 50 Ω_{\cdot}

Test port output continued

Description	Specification	Supplemental information	
Phase noise (10 kHz offset fro	om center frequency, nominal power at test po	rt)	
10 MHz to 45 MHz		80 dBc typical	
45 MHz to 10 GHz		70 dBc typical	
		60 dBc typical	
24 to 70 GHz		55 dBc typical	
Phase noise (10 kHz from cen	ter frequency, nominal power at test port) -0	ption 080 enabled	
10 to 45 MHz		80 dBc, typical	
45 MHz to 10 GHz		70 dBc, typical	
10 to 24 GHz		60 dBc, typical	
24 to 70 GHz		55 dBc, typical	
Phase noise (100 kHz from ce	nter frequency, nominal power at test port)		
10 to 45 MHz		90 dBc, typical	
45 MHz to 10 GHz		90 dBc, typical	
10 to 24 GHz		85 dBc, typical	
24 to 70 GHz		75 dBc, typical	
Phase noise (100 kHz from ce	nter frequency, nominal power at test port) – (Option 080 enabled	
10 to 45 MHz		85 dBc, typical	
45 MHz to 10 GHz		80 dBc, typical	
10 to 24 GHz		70 dBc, typical	
24 to 70 GHz		60 dBc, typical	
Phase noise (1 MHz from cent	ter frequency, nominal power at test port)		
10 to 45 MHz		115 dBc, typical	
45 MHz to 10 GHz		110 dBc, typical	
10 to 24 GHz		105 dBc, typical	
24 to 70 GHz		95 dBc, typical	
Phase noise (1 MHz from cent	ter frequency, nominal power at test port) – Op	otion 080 enabled	
10 to 45 MHz		110 dBc, typical	
45 MHz to 10 GHz			
10 to 24 GHz		95 dBc, typical	
24 to 70 GHz		85 dBc, typical	
Harmonics (2nd or 3rd)			
10 to 500 MHz		10 dBc typical, in power	
500 MHz to 10 GHz		15 dBc typical, in power	
10 to 24 GHz	23 dBc typical, in power		
24 to 50 GHz		16 dBc typical, in power	
50 to 60 GHz	z 13 dBc typical, in power		
60 to 70 GHz		19 dBc typical, in power	
Non-harmonic spurious (at no	ominal output power)		
10 MHz to 20 GHz		-50 dBc typical, for offset	
20 MHz to 70 GHz		frequency > 1 kHz	
		-30 dBc typical, for offset	
		frequency > 1 kHz	

E8361A **Test port input**

Description	Specification		Supplemental	
	Standard	Option 014	information	
Test port noise floor ^{1, 2}			080 enabled, typical	
10 Hz IF bandwidth				
10 to 45 MHz ³	< -70 dBm	< -70 dBm	< -70 dBm	
45 to 500 MHz ²	< -90 dBm	< -90 dBm	< -90 dBm	
500 MHz to 2 GHz	< -112 dBm	< -112 dBm	< -112 dBm	
2 to 10 GHz	< -112 dBm	< -112 dBm	< -112 dBm	
10 to 24 GHz	< -116 dBm	< -115 dBm	< -115 dBm	
24 to 30 GHz	< -105 dBm	< -104 dBm	< -104 dBm	
30 to 40 GHz	< -105 dBm	< -104 dBm	< -104 dBm	
40 to 45 GHz	< -103 dBm	< -102 dBm	< -102 dBm	
45 to 50 GHz	< -101 dBm	< -100 dBm	< -100 dBm	
50 to 60 GHz	< -100 dBm	< -99 dBm	< -99 dBm	
60 to 67 GHz	< -99 dBm	< -97 dBm	< -97 dBm	
67 to 70 GHz ³	< -99 dBm	< -97 dBm	< -97 dBm	
1 kHz IF bandwidth				
10 to 45 MHz ³	< -50 dBm	< -50 dBm	< -50 dBm	
45 to 500 MHz ²	< -70 dBm	< -70 dBm	< -70 dBm	
500 MHz to 2 GHz	< -92 dBm	< -92 dBm	< -92 dBm	
2 to 10 GHz	< -92 dBm	< -92 dBm	< -92 dBm	
10 to 24 GHz	< -96 dBm	< -95 dBm	< -95 dBm	
24 to 40 GHz	< -85 dBm	< -84 dBm	< -84 dBm	
30 to 40 GHz	< -85 dBm	< -84 dBm	< -84 dBm	
40 to 45 GHz	< -83 dBm	< -82 dBm	< -82 dBm	
45 to 50 GHz	< -81 dBm	< -80 dBm	< -80 dBm	
50 to 60 GHz	< -80 dBm	< -79 dBm	< -79 dBm	
60 to 67 GHz	< -79 dBm	< -77 dBm	< -77 dBm	
67 to 70 GHz ³	< -79 dBm	< -77 dBm	< -77 dBm	

^{1.} Total average (rms) noise power calculated as mean value of a linear magnitude trace expressed in dBm.

2. Noise floor may be degraded by 10 dB at particular frequencies (multiples of 5 MHz)

due to spurious receiver residuals.

^{3.} Typical performance.

Test port input continued

Description	Specification Standard	Option 014	Supplemental information
Direct receiver access			
input noise floor ¹			
10 Hz IF bandwidth			
10 to 45 MHz ⁴		< -106 dBm	
45 to 500 MHz ²		< -105 dBm	Online Help also includes the
500 MHz to 2 GHz		< -125.5 dBm	category "Direct receiver access
2 to 10 GHz 10 to 24 GHz		< -125 dBm < -128 dBm	noise input floor, Option 080 enabled"
24 to 30 GHz		< -117.5 dBm	
30 to 40 GHz		< -117.0 dBm	
40 to 45 GHz		< -115 dBm	
45 to 50 GHz		< -112.5 dBm	
50 to 60 GHz		< -111 dBm	
60 to 67 GHz		< -108 dBm	
67 to 70 GHz ⁴		< -107 dBm	
1 kHz IF bandwidth			
10 to 45 MHz ⁴		< -86 dBm	
45 to 500 MHz ²		< -85 dBm	
500 MHz to 2 GHz		< -105.5 dBm	
2 to 10 GHz		< -105 dBm	
10 to 24 GHz 24 to 30 GHz		< -108 dBm < -97.5 dBm	
30 to 40 GHz		< -97.5 dBm	
40 to 45 GHz		< -95 dBm	
45 to 50 GHz		< -92.5 dBm	
50 to 60 GHz		< -91 dBm	
60 to 67 GHz		< -88 dBm	
67 to 70 GHz ⁴		< -87 dBm	
Receiver compression le			
10 to 45 MHz ^{4, 5}	negligible	negligible	
45 MHz to 500 MHz ⁵	< 0.25 dB compression at -3 dBm	< 0.25 dB compression at -3 dBm	
500 MHz to 30 GHz 30 GHz to 67 GHz	< 0.25 dB compression at 0 dBm < 0.15 dB compression at -5 dBm	< 0.25 dB compression at 0 dBm < 0.15 dB compression at -7 dBm	
67 GHz to 70 GHz 4	< 0.15 dB compression at -5 dBm	< 0.15 dB compression at -7 dBm	
	Tone spacing from 100 kHz to 5 MHz	CO.13 db Compression at -7 dbm	
minu Oruor mitoroopt	Tone opacing from 100 kitz to 0 kittle		Typical:
10 to 500 MHz			+30 dBm
500 MHz to 24 GHz			+24 dBm
24 to 40 GHz			+23 dBm
40 to 50 GHz			+24 dBm
50 to 67 GHz			+26 dBm
Third Order Intercept ³ –	Tone spacing from 5 MHz to 20 MHz		
			Typical:
10 to 500 MHz			Not applicable
500 MHz to 24 GHz			+20 dBm
24 to 40 GHz			+20 dBm +22 dBm
40 to 50 GHz 50 to 67 GHz			+24 dBm
	Tone spacing from 20 MHz to 50 MHz		· 27 UDIII
imiu oruei intercept –	Tone Spacing Irom 20 WITE to 50 WITE		Typical:
10 to 500 MHz			Not applicable
500 MHz to 24 GHz			+26 dBm
24 to 40 GHz			+24 dBm
40 to 50 GHz			+25 dBm
50 to 67 GHz			+27 dBm
		_	

Total average (rms) noise power calculated as mean value of a linear magnitude trace expressed in dBm.

^{2. 0} Hz offset.

^{3.} TOI is a typical specification that applies while the network analyzer receiver is in its linear range.

^{4.} Typical performance

Coupler roll-off will reduce compression to a negligible level below 500 MHz.

Test port input continued

Description	Specification		Supplemental
	Standard Option 014		information
System compression level – at max	rimum leveled output power		
See Dynamic Accuracy Chart			
Trace noise magnitude			
10 to 45 MHz	< 0.100 dB rms		
45 to 500 MHz	< 0.010 dB rms		1 kHz IF bandwidth
500 MHz to 24 GHz	< 0.006 dB rms		Ratio measurement, nominal
24 to 67 GHz	< 0.006 dB rms		power at test port
67 to 70 GHz	< 0.006 dB rms		
Trace noise magnitude 1 – Option 0	80 enabled ²		
10 to 45 MHz	< 0.100 dB rms		1 kHz IF bandwidth
45 to 500 MHz	< 0.010 dB rms		Ratio measurement, nominal
500 MHz to 24 GHz	< 0.006 dB rms		power at test port
24 to 67 GHz	< 0.009 dB rms		
67 to 70 GHz	< 0.009 dB rms		
Trace noise phase ¹			
10 to 45 MHz	< 0.500° rms		
45 to 500 MHz	< 0.100° rms		1 kHz IF bandwidth
500 MHz to 24 GHz	< 0.060° rms		Ratio measurement, nominal
24 to 67 GHz	< 0.100° rms		power at test port
67 to 70 GHz	< 0.100° rms		
Trace noise phase 1 – Option 080 er	nabled ²		
10 to 45 MHz	< 0.500° rms		1 kHz IF bandwidth
45 to 500 MHz	< 0.100° rms		Ratio measurement, nominal
500 MHz to 24 GHz	< 0.060° rms		power at test port
24 to 67 GHz	< 0.100° rms		
67 to 70 GHz	< 0.100° rms		

Typical performance.
 0 Hz offset.

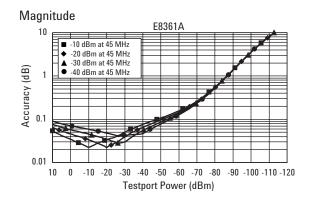
Test port input continued

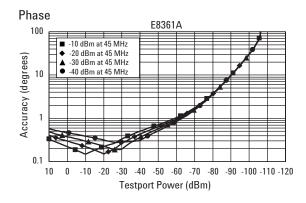
Description	Specification		Supplemental	
	Standard	Option 014	information	
Reference level magnitude				
Range	±500 dB	±500 dB		
Resolution	0.001 dB	0.001 dB		
Reference level phase				
Range	±500°	±500°		
Resolution	0.01°	0.01°		
Stability magnitude ¹			Typical ratio measurement:	
			Measured at the test port	
10 to 45 MHz			±0.01 dB/°C	
45 MHz to 20 GHz			±0.01 dB/°C	
20 to 40 GHz	20 to 40 GHz ±0.02 dB/°C		±0.02 dB/°C	
40 to 50 GHz			±0.02 dB/°C	
50 to 67 GHz	50 to 67 GHz ±0.02 dB/		±0.02 dB/°C	
67 to 70 GHz			±0.02 dB/°C	
Stability phase ¹			Typical ratio measurement:	
			Measured at the test port	
10 to 45 MHz			±0.2°/°C	
45 MHz to 20 GHz			±0.2°/°C	
20 to 40 GHz			±0.5°/°C	
40 to 50 GHz			±0.8°/°C	
50 to 67 GHz			±0.8°/°C	
67 to 70 GHz			±0.8°/°C	
Damage input level				
Test port 1 and 2			+27 dBm or ±40 VDC, typica	
R1, R2 in	R1, R2 in		+15 dBm or ±15 VDC, typica	
A, B in		+15 dBm or ±15 VDC, typica		
Coupler thru (Option 014)		+27 dBm or ±40 VDC, typical		
Coupler arm (Option 014)		+30 dBm or ±7 VDC, typical		

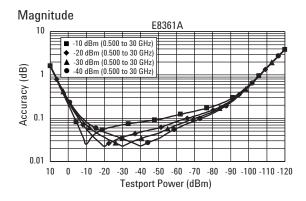
E8361A

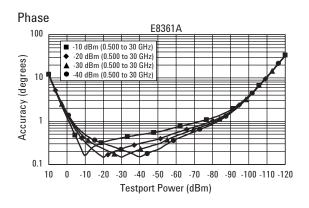
Group delay ¹

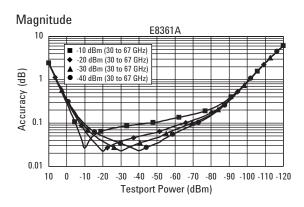
Description	Specification	Supplemental information
Aperture (selectable)	(frequency span)/(number of points -1)	
Maximum aperture	20% of frequency span	
Range	0.5 x (1/minimum aperture)	
Maximum delay		Limited to measuring no more than 180° of
		phase change within the minimum aperture.

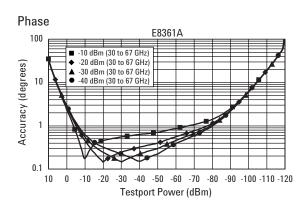

^{1.} Stability is defined as a ratio measurement measured at the test port.

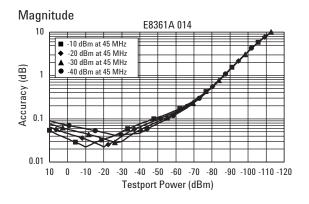

Test port input continued

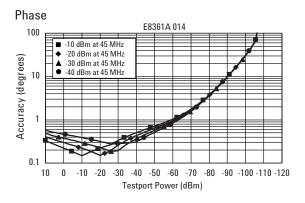

Dynamic accuracy

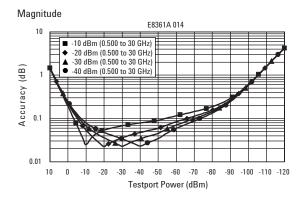

Applies to input ports 1 and 2, accuracy of the test port input power reading relative to the reference input power level. Also applies to the following conditions:

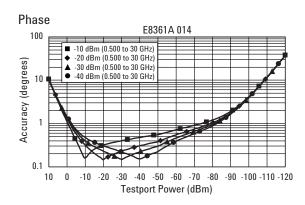

• IF bandwidth = 10 H

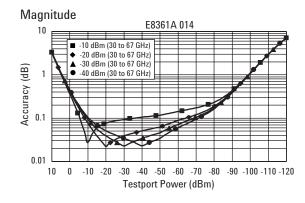


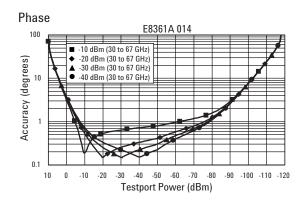



Test port input continued


Dynamic accuracy


Applies to input ports 1 and 2, accuracy of the test port input power reading relative to the reference input power level. Also applies to the following conditions:


• IF bandwidth = 10 H



Microwave PNA Series General information

Description	Supplemental information		
System IF bandwidth range	1 Hz to 40 kHz, nominal		
RF connectors			
E8362B	3.5 mm (male), 50 Ω , (nominal), center pin recession flush to .002 in. (characteristic)		
E8363/4B	2.4 mm (male), 50 Ω , (nominal), center pin recession flush to .002 in. (characteristic)		
E8361A	1.85 mm (male), 50 Ω , (nominal), center pin recession flush to .002 in. (characteristic)		
Display	8.4 in diagonal color active matrix LCD; 640 (horizontal) x 480 (vertical) resolution;		
	59.83 Hz vertical refresh rate; 31.41 Hz horizontal refresh rate		
Display range			
Magnitude	±200 dB (at 20 dB/div), max		
Phase	±500°, max		
Polar	10 pico units, min; 1000 units, max		
Display resolution	·		
. , Magnitude	0.001 dB/div, min		
Phase	0.01°/div, min		
Marker resolution			
Magnitude	0.001 dB, min		
Phase	0.01°, min		
Polar	0.01 mUnit, min; 0.01°, min		
CPU	Intel® 500 MHz Pentium® III		
Rear panel			
10 MHz reference in			
Input frequency	10 MHz ±10 ppm, typ.		
Input power	–15 dBm to +20 dBm, typ.		
Input impedance	200 Ω. nom.		
10 MHz reference out			
Output frequency	10 MHz ±10 ppm, typ.		
Signal type	Sine wave, typ.		
Output power	10 dB \pm 4 dB into 50 Ω , typ.		
Output impedance	50 Ω , nom.		
Harmonics	< -40 dBc, typ.		
VGA video output	15-pin mini D-Sub; Drives VGA compatible monitors		
GPIB	Type D-24, 24-pin; female compatible with IEEE-488		
Parallel port (LPT1)	25-pin D-sub miniature connector; provides connection to printers or any other		
,	parallel port peripheral		
Serial port (COM1)	9-pin D-Sub; male compatible with RS-232		
USB port	1 port on front panel and 5 ports on rear panel, universal serial bus jack,		
	Type-A configuration (4 contacts inline, contact 1 on left); female		
Contact 1	Vcc: 4.75 to 5.25 VDC, 500 mA max		
Contact 2	-Data		
Contact 3	+Data		
Contact 4	Ground		
LAN	10/100 BaseT Ethernet; 8-pin configuration auto selects between the two data rates		
Test set I/O	25-pin D-sub; available for external test set control		
Handler I/O	36-pin, parallel I/O port; all input/output signals are default set to negative logic;		
can be reset to positive logic via GPIB command			
Auxiliary I/O	25-pin D-sub male connector; analog and digital I/O		
rusmui j i/ U	25 pm D sub mare connector, analog and digital 17 0		

Microwave PNA Series

General information continued

Description	Supplemental information			
Line power ¹				
Frequency	48 Hz to 66 Hz			
Voltage at 115-V setting	90 to 132 VAC; 120 VAC, nom.			
Voltage at 220-V setting	198 to 264 VAC; 240 VAC, nom.			
VA max	600 VA max			
General environmental				
RFI/EMI susceptibility	Defined by CISPR Pub. 11, Grou	ıp 1, Class A, an	d IEC 50082-1	
ESD	Minimize using static-safe wor	k procedures an	d an antistatic ber	ich mat
Dust	Minimize for optimum reliability	/		
Operating environment				
Temperature	0 °C to +40 °C; Instrument powers up, phase locks, and displays no error messages within this temperature range. (Except for 'source unleveled' error message that may			
Error-corrected temperature range	occur at temperature outside the specified performance temperature range of 25 °C, System specifications valid from 23 °C, ±3 °C, with less than 1 °C deviation from calibration temperature			
g-				
Humidity	5 to 95% at +40 °C			
Altitude	0 to 4500 m (14,760 ft)			
Non-operating storage environment	3 to 1000 iii (1 i// 50 it)			
Temperature	-40 °C to +70 °C			
Humidity	0 to 90% at +65 °C (non-conde	nsina)		
Altitude	0 to 15,240 m (50,000 ft)			
Cabinet dimensions				
		Height	Width	Depth
	Excluding front and rear	222 mm	425 mm	426 mm
	panel hardware and feet	8.75 in	16.75 in	16.8 in
	As shipped - includes front	242 mm	425 mm	472 mm
	panel connectors, rear panel bumpers, and feet.	9.5 in	16.75 in	18.6 in
	As shipped plus handles	242 mm	458 mm	453 mm
	23 stubben bins trainings	9.5 in	436 iiiii 18 in	17.8 in
	As shipped plus rack	242 mm	483 mm	472 mm
	mount flanges	9.5 in	19 in	18.6 in
	As shipped plus handles and	242 mm	483 mm	453 mm
	rack mount flanges	9.5 in	19 in	17.8 in
Weight				
Net	29 kg (64 lb), nom.			
Shipping	36 kg (80 lb), nom.			

^{1.} A third-wire ground is required.

Microwave PNA Series Measurement throughput summary

Cycle time vs. IF bandwidth¹

Instrument state: preset condition, 201 points, CF = 28 GHz, Span = 100 MHz, correction off. Add 21 ms for display on. Cycle time includes sweep and re-trace time.

IF bandwidth (Hz)	Cycle time (ms)	Cycle time (ms) Option 080 enabled
40,000	11	100
35,000	12	101
30,000	13	102
20,000	16	106
10,000	30	127
7,000	38	138
5,000	50	152
3,000	74	182
1,000	274	326
300	694	782
100	1905	2054
30	6091	6355
10	17916	18372

Cycle time vs. number of points¹

Instrument state: preset condition, 35 kHz IF bandwidth, CF = 28 GHz, Span = 100 MHz, correction off. Add 21 ms for display on. Cycle time includes sweep and re-trace time.

Number of points	Cycle time (ms)
3	6
11	6
51	7
101	9
201	12
401	18
801	30
1601	55
16,001	497

Cycle time (ms) 1,2

	Number of points			
	201	401	1601	16,001
Start 28 GHz, stop 30 GHz, IFBW = 35 kHz				
Uncorrected and one-port cal	12	19	55	503
Two-port cal	29	44	124	1112
Start 10 MHz, stop 10 GHz, IFBW = 35 kHz				
Uncorrected and one-port cal	86	93	121	583
Two-port cal	179	199	267	1301
Start 10 MHz, stop 20 GHz, IFBW = 35 kHz				
Uncorrected and one-port cal	126	130	153	597
Two-port cal	264	275	335	1321
Start 10 MHz, stop 40 GHz, IFBW = 35 kHz				
Uncorrected and one-port cal	185	190	213	621
Two-port cal	382	401	459	1374
Start 10 MHz, stop 50 GHz, IFBW = 35 kHz				
Uncorrected and one-port cal	210	216	243	643
Two-port cal	436	450	522	1405
Start 10 MHz, stop 67 GHz, IFBW = 35 kHz				
Uncorrected	244	254	300	645
Corrected	502	524	591	1423

^{1.} Typical performance.

Includes sweep time, retrace time and band-crossing time. Analyzer display turned off with DISPLAY:ENABLE OFF. Add 21 ms for display on. Data for one trace (S11) measurement.

^{3.} Option 010 only. Analyzer display turned off with DISPLAY:ENABLE OFF. Add 21 ms for display on.

Data transfer time (ms)¹

	Number of points			
	201	401	1601	16,001
SCPI over GPIB				
(program executed on external PC)				
32-bit floating point	7	12	43	435
64-bit floating point	12	22	84	856
ASCII	64	124	489	5054
SCPI (program executed in the analyzer)				
32-bit floating point	1	2	3	30
64-bit floating point	2	2	4	40
ASCII	29	56	222	2220
COM (program executed in the analyzer)				
32-bit floating point	1	1	1	6
Variant type	1	2	6	68
DCOM over LAN				
(program executed on external PC)				
32-bit floating point	1	1	2	121
Variant type	3	6	19	939

^{1.} Typical performance.

Measurement capabilities

Number of measurement channels

Thirty-two independent measurement channels. A measurement channel is coupled to stimulus settings including frequency, IF bandwidth, power level, and number of points.

Number of display windows

Up to 16 display windows. Each window can be sized and re-arranged. Up to four measurement channels can be displayed per window.

Number of traces

Up to four active traces and four memory traces per window. Measurement traces include S-parameters, as well as relative and absolute power measurements.

Measurement choices

S11, S21, S12, S22, A/R1, A/R2, A/B, B/R1, B/R2, B/A, R1/A, R1/B, R1/R2, R2/A, R2/B, R2/R1, A, B, R1, R2

Formats

Log or linear magnitude, SWR, phase, group delay, real and imaginary, Smith chart, polar.

Data markers

Ten independent markers per trace. Reference marker available for delta marker operation. Marker formats include log or linear magnitude, phase, real, imaginary, SWR, delay, R + jX, and G + jB.

Marker functions

Marker search

Maximum value, minimum value, target, next peak, peak right, peak left, target, and bandwidth with user-defined target values

Marker-to functions

Set start, stop, and center to active marker stimulus value; set reference to active marker response value; set electrical delay to active marker phase response value.

Trace statistics

Calculates and displays mean, standard deviation and peak-to-peak deviation of the data trace.

Tracking

Performs new search continuously or on demand.

Source control

Measured number of points per sweep

User definable from 2 to 16,001.

Sweep type

Linear, CW (single frequency), power or segment sweep.

Segment sweep

Define up to 101 different, sub-sweep frequency ranges in any combination of start-stop sweep modes. Set number of points, test port power levels, IF bandwidth, and dwell time independently for each segment.

Sweep trigger

Set to continuous, hold, single, or group sweep with internal or external trigger.

Power

Power slope can be set in dBm/GHz. Control the test port signal by setting the internal attenuator of the test set over a 60-dB range.

Trace functions

Display data

Display current measurement data, memory data, or current measurement with measurement and memory data simultaneously.

Trace math

Vector addition, subtraction, multiplication or division of current linear measurement values and memory data.

Display annotations

Start/stop, center/span, or CW frequency, scale/div, reference level, marker data, warning and caution messages, trace status, and pass/fail indication.

Title

Add custom titles (50 characters maximum) to the display. Titles will be printed when making hardcopies of displayed measurements.

Autoscale

Automatically selects scale resolution and reference value to center the trace.

Electrical delay

Offset measured phase or group delay by a defined amount of electrical delay, in seconds.

Phase offset

Offset measured phase or group delay by a defined amount in degrees.

Automation

	GPIB	LAN	Internal	
SCPI	Χ	Χ	Х	
COM/DCOM		Χ	Χ	

Methods

Controlling via internal analyzer execution

Write applications that can be executed from within the analyzer via COM (component object model) or SCPI standard-interface commands. These applications can be developed in a variety of languages, including Visual Basic, Visual C++, Agilent VEE, or LabViewTM programming languages.

Controlling via GPIB

The GPIB interface operates to IEEE 488.2 and SCPI standard-interface commands. The analyzer can either be the system controller, or talker/listener.

Controlling via LAN

The built-in LAN interface and firmware support data transfer and control via direct connection to a 10 Base-T network.

SICL/LAN Interface

The analyzer's support for SICL (standard instrument control library) over the LAN provides control of the network analyzer using a variety of computing platforms, I/O interfaces, and operating systems. With SICL/LAN, the analyzer is controlled remotely over the LAN with the same methods used for a local analyzer connected directly to the computer via a GPIB interface.

DCOM Interface

The analyzer's support for DCOM (distributed component object model) over the LAN provides control of the network analyzer using a variety of platforms. DCOM acts as an interface to the analyzer for external applications. With DCOM, applications can be developed or executed from an external computer. During development, the application can interface to the analyzer over the LAN through the DCOM interface. Once development is completed, the application can be distributed to the analyzer and interfaced using COM.

Data accuracy enhancement

Measurement calibration

Measurement calibration significantly reduces measurement uncertainty due to errors caused by system directivity, source and load match, tracking and crosstalk. Full two-port calibration removes all the systematic errors to obtain the most accurate measurements.

Calibration types available

Frequency response

Simultaneous magnitude and phase correction of frequency response errors for either reflection or transmission measurements.

Response and isolation

Compensates for frequency response and directivity (reflection) or frequency response and crosstalk errors.

One-port calibration

Uses test set port 1 or port 2 to correct for directivity, frequency response and source match errors.

Two-port calibration

Compensates for directivity, source match, reflection frequency response, load match, transmission frequency response and crosstalk. Crosstalk calibration can be omitted.

Mixer Calibration

Scalar-mixer calibration:

Scalar-mixer calibration corrects the conversion loss for input port source match, output port load match, absolute input or source power, and absolute output or receiver power. Scalar-mixer calibrations also corrects the input match measurements (S11) for input port directivity, frequency response and source match at the input frequencies and corrects the output match measurement (S22) for output directivity, frequency response and source match at the output frequencies.

Vector-mixer calibration:

At the input frequencies of the mixer, the vector-mixer calibration compensates for directivity, source match, and reflection frequency response. At the output frequencies of the mixer, the vector-mixer calibration compensates for directivity, load match, and reflection frequency response. Frequency-translated transmission response is compensated by using a characterized calibration mixer. The characterization of the calibration process.

TRL/TRM calibration

Compensates for directivity, reflection and transmission frequency response and crosstalk in both forward and reverse directions. Provides the highest accuracy for both coaxial and non-coaxial environments, such as on-wafer probing, in-fixture or waveguide measurements.

Interpolated error correction

With any type of accuracy enhancement applied, interpolated mode recalculates the error coefficients when the test frequencies are changed. The number of points can be increased or decreased and the start/stop frequencies can be changed, but the resulting frequency range must be within the original calibration frequency. System performance is not specified for measurements with interpolated error correction applied.

Velocity factor

Enters the velocity factor to calculate the equivalent electrical length.

Reference plane extension

Redefine the plane-of-measurement reference to other than port 1 or port 2.

Storage

Internal hard disk drive

Store and recall binary instrument states and calibration data on 10 GB, minimum, internal hard drive. Instrument data can also be saved in ASCII (including S2P) format. All files are MS-DOS®-compatible. Instrument states include all control settings, active limit lines, active list frequency tables, memory trace data.

Disk drive

Instrument data, instrument states, and calibration data can be stored on internal 3.5-in, 1.4 MB floppy disk in MS-DOS-compatible format.

Data hardcopy

Printouts of instrument data are directly produced on any printer with the appropriate Windows® 2000 printer driver. The analyzer provides USB, Centronics (parallel), serial and LAN interfaces.

System capabilities

Familiar graphical user interface

The PNA Series employs a graphical user interface based on Windows 2000. There are two fundamental ways to operate the instrument manually: you can use a hardkey interface, or use drop-down menus driven from a mouse (or another standard USB pointing device). Hardkey navigation brings up active toolbars that perform most of the operations required to configure and view measurements. Front-panel navigation keys allow for use of the instrument without a mouse. In addition, mouse-driven pull-down menus provide easy access to both standard and advanced features. Both methods employ dialog boxes to display all the choices needed to make measurement set-ups.

Built-in information system

Embedded documentation provides measurement assistance in five different languages (English, French, German, Japanese, and Spanish). A thorough index of help topics and context-sensitive help available from dialog boxes.

Limit lines

Define test limit lines that appear on the display for go/no go testing. Lines may be any combination of horizontal, sloping lines, or discrete data points.

Time-domain (Option 010)

With the time-domain option, data from transmission or reflection measurements in the frequency domain are converted to the time domain using a Fourier transformation technique (chirp Z) and presented on the display. The time-domain response shows the measured parameter value versus time. Markers may also be displayed in electrical length (or physical length if the relative propagation velocity is entered).

Time stimulus modes

Two types of time excitation stimulus waveforms can be simulated during the transformations, a step and an impulse.

Low-pass step

This stimulus, similar to a traditional time-domain reflectometer (TDR) stimulus waveform, is used to measure low-pass devices. The frequency-domain data should extend from DC (extrapolated value) to a higher value. The step response is typically used for reflection measurements only.

Low-pass impulse

This stimulus is also used to measure low-pass devices. The impulse response can be used for reflection or transmission measurements.

Bandpass impulse

The bandpass impulse stimulates a pulsed RF signal (with an impulse envelope) and is used to measure the time-domain response of band-limited devices. The start and stop frequencies are selectable by the user to any values within the limits of the test set used. Bandpass time-domain responses are useful for both reflection and transmission measurements.

Time-domain range

The "alias-free" range over which the display is free of response repetition depends on the frequency span and the number of points. Range, in nanoseconds, is determined by: Time-domain range = (number of points - 1)/frequency span [in GHz]

Range resolution

The time resolution of a time-domain response is related to range as follows: Range resolution = time span/(number of points - 1)

Windows

The windowing function can be used to modify (filter) the frequency-domain data and thereby reduce over-shoot and ringing in the time-domain response. Kaiser Beta windows are available.

Gating

The gating function can be used to selectively remove reflection or transmission time-domain responses. In converting back to the frequency-domain the effects of the responses outside the gate are removed.

Configurable test set (Option 014)

With the configurable test set option, front panel access loops are provided to the signal path between the source output and coupler input.

Extended dynamic range configuration

Reverse the signal path in the coupler and bypass the loss typically associated with the coupled arm. Change the port 2 switch and coupler jumper configurations to increase the forward measurement dynamic range. When making full two-port error corrected measurements, the reverse dynamic range is degraded by 12 to 15 dB.

High power measurement configuration

Add external power amplifier(s) between the source output and coupler input to provide up to +30 dBm of power at the test port(s). Full two-port error correction measurements possible. When the DUT output is expected to be greater than +30 dBm, measure directly at the B input and use an external fixed or step attenuator to prevent damage to the receiver. For measurements greater than +30 dBm, add external components such as couplers, attenuators, and isolators.

Extended power range and bias-tees (Option UNL)

Adds two 70 dB step attenuators and two bias-tees. A step attenuator and bias-tee set is inserted between the source and test port one and another set between the source and test port two (currently unavailable on the E8361A).

Frequency-offset (Option 080)

This option enables the PNA Series microwave network analyzers to set the source frequency independently from where the receivers are tuned. This ability is important for two general classes of devices: mixers (and converters) and amplifiers. For frequency-translating devices like mixers or converters, frequency-offset capability is necessary for conversion loss/gain measurements (both amplitude and phase), since, by definition, the input and output frequency of the DUT are different. For amplifier measurements, frequency offset capability is required to measure amplifier harmonics or when using the internal source as one of the stimuli of an IMD measurement. Option 080 provides a very basic user interface. The user may enter multiplier and offset values to describe how the instrument's receivers track the source frequency. While flexible, the user interface requires the user to calculate the correct values. The frequency-converter application (Option 083) provides a much more intuitive and easy-to-use user interface, designed specifically for mixer and converter measurements.

Reference channel switch (Option 081)

Option 081 adds a solid-state internal RF transfer switch in the R1 reference-receiver path. The switch allows the instrument to easily switch between standard S-parameter (non-frequency-offset) measurements and frequency-offset measurements such as relative phase or absolute group delay that require an external reference mixer. The user can set the switch manually or remotely, but it is best used with the frequency-converter application (Option 083), where it is controlled automatically during the vector-mixer calibration procedure (currently unavailable on the E8361A).

Frequency-converter application (Option 083)

The frequency-converter application adds an intuitive and easy-to-use user interface, advanced calibration choices that provide exceptional amplitude and phase accuracy, and control of external signal sources for use as local oscillators. A graphical set-up dialog box lets you quickly set up the instrument for single or dual conversion devices. This set-up screen also helps you calculate and choose where mixing and image products will fall.

Add receiver attenuator (Option 016)

A 35 dB attenuator is added between both test ports and their corresponding receiver. See page 45 for a basic block diagram (currently unavailable on the E8361A).

Extended memory (Option 022)

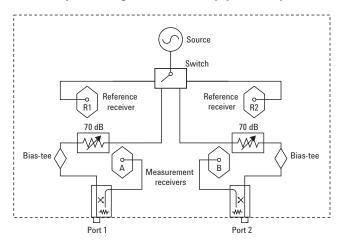
More RAM is added for a total of 512 MB.

Commercial calibration certificate with test data (Option UK6)

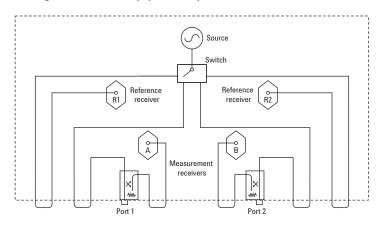
Complete set of measurements which tests unit to manufacturer's published specifications. Includes calibration label, calibration certificate, and data report. Conforms to ISO 9001.

ISO 17025 compliant calibration (Option 1A7)

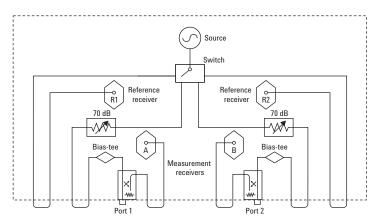
Complete set of measurements which tests unit to manufacturer's published specifications. Includes calibration label, ISO 17025 calibration certificate, and data report, measurement uncertainties and guardbands on all customer specifications. Conforms to ISO 17025 and ISO 9001.

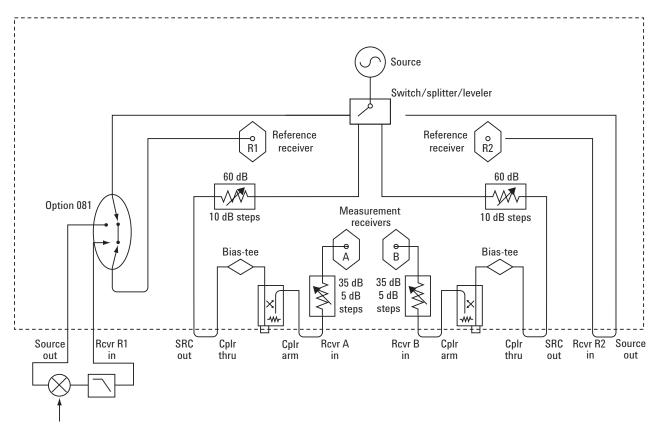

Supplemental performance
Minimum reference channel input level
(Option 080 disabled): -35 dBm

Simplified test set block diagram


Standard power range

Source Switch Reference receiver R2 Measurement receivers Port 1 Port 2


Extended power range and bias-tees (Option UNL)


Configuration test set (Option 014)

Configurable test set with extended power range and bias-tees (Option UNL and 014)

Fully optioned (Options 014, UNL, 016, 080, 081)

Ordering guide for PNA series

Network analyzers

This guide is intended to assist you in the ordering process. For detailed ordering information, refer to the *PNA Series Microwave Network Analyzer Configuration Guide* (literature number 5988-7989EN).

PNA Series microwave network analyzers

E8362B 10 MHz to 20 GHz E8363B 10 MHz to 40 GHz E8364B 10 MHz to 50 GHz E8361A 10 MHz to 67 GHz

Options

To add options to a product, order the corresponding item number.

	Description	For E8362B	For E8363B	For E8364B	For E8361A	Additional
		item number	item number	item number	item number	information
Test set						
Option 014	Configurable test set	E8362B-014	E8363B-014	E8364B-014	E8361A-014	
Power configura	tion					
Option UNL	 Extended power range and bias-tees 	E8362B-UNL	E8364B-UNL	E8364B-UNL	Available soon	
Option 016	 Add receiver attenuators 	E8362A-016	E8364A-016	E8364A-016	Available soon	
CPU RAM						
Option 022	Extended memory	E8362A-022	E8364A-022	E8364A-022	E8361A-022	
Non-linear meas	urements					
Option 080	Frequency offset	E8362A-080	E8364A-080	E8364A-080	E8361A-080	Requires 014
Option 081	 Reference receiver switch 	E8362A-081	E8364A-081	E8364A-081	Available soon	Requires 014, 080
Option 083	Frequency-converter measurement application	E8362A-083	E8364A-083	E8364A-083	E8361A-083	Requires 014, 080, and 081(E8361A only requires 014, 080) includes GPIB to USB interface (82357A)
Measurement fe	atures					
Option 010	Time-domain capability	E8362A-010	E8363A-010	E8364A-010	E8361A-010	
Accessories						
Option 1CM	 Rack mount kit without handles 	E8362A-1CM	E8363A-1CM	E8364A-1CM	E8361A-1CM	
Option 1CP	 Rack mount kit with handles 	E8362A-1CP	E8363A-1CP	E8364A-1CP	E8361A-1CP	
N4688A	 USB CD R/W drive 	N4688A	N4688A	N4688A	N4688A	
N4689A	• USB Hub	N4689A	N4689A	N4689A	N4689A	
Additional docum						
Option AVK	 Printed English version of on-line Help 	E8362A-AVK	E8363A-AVK	E8364A-AVK	E8361A-AVK	
Option ABD 2		E8362A-ABD	E8363A-ABD	E8364A-ABD	E8361A-ABD	
Option ABE 2	 Printed Spanish version of on-line Help 	E8362A-ABE	E8363A-ABE	E8364A-ABE	E8361A-ABE	
Option ABF ²	 Printed French version of on-line Help 	E8362A-ABF	E8363A-ABF	E8364A-ABF	E8361A-ABF	
Option ABJ ²	 Printed Japanese version of on-line Help 	E8362A-ABJ	E8363A-ABJ	E8364A-ABJ	E8361A-ABJ	
Option OBW	 Printed copy of assembly level service 					
	manual version of on-line Help	E8362A-0BW	E8363A-0BW	E8364A-0BW	E8361A-0BW	
Calibration docu						
Option 1A7	 ISO 17025 compliant calibration 	E8362B-1A7	E8363B-1A7	E8364B-1A7	Available soon	
Option UK6	 Commercial calibration certificate 	E8362A-UK6	E8363A-UK6	E8364A-UK6	E8361A-UK6	
	with test data					

Note: Item numbers may not correspond to product model number. For example, to order the time-domain option on the E8362B, the correct item number to order is E8362A-010.

Warranty and service

For warranty and service of 5 years, please order 60 months of R-51B (quantity = 60). Standard warranty is 36 months.

R-51B Return-to-Agilent warranty and service plan

Calibration²

For 3 years, order 36 months of the appropriate calibration plan shown below. For 5 years, specify 60 months.

R-50C-001 Standard calibration

R-50C-002 Standards compliant calibration

^{1.} Options not available in all countries.

^{2.} Printed version of on-line help has translations up to firmware revision 1.0.

Information resources

Literature

PNA Series RF and Microwave Network Analyzers Brochure, literature number 5968-8472E

PNA Series Microwave Network Analyzer Configuration Guide, literature number 5988-7989EN

Web

PNA Series:

www.agilent.com/find/pna

Application and product resources: www.agilent.com/find/test

www.agilent.com/find/emailupdates Get the latest information on the products and applications you select.

Microsoft®, Windows® and MS-DOS® are U.S. registered trademarks of Microsoft Corporation.

National Instrument TM and LabView TM are trademarks of National Instruments Corporation.

Intel® and Pentium® are US registered trademarks of Intel Corporation.

Agilent Technologies Test and Measurement Support, Services, and Assistance

Agilent Technologies aims to maximize the value you receive, while minimizing your risk and problems. We strive to ensure that you get the test and measurement capabilities you paid for and obtain the support you need. Our extensive support resources and services can help you choose the right Agilent products for your applications and apply them successfully. Every instrument and system we sell has a global warranty. Support is available for at least five years beyond the production life of the product. Two concepts underlie Agilent's overall support policy: "Our Promise" and "Your Advantage."

Our Promise

Our Promise means your Agilent test and measurement equipment will meet its advertised performance and functionality. When you are choosing new equipment, we will help you with product information, including realistic performance specifications and practical recommendations from experienced test engineers. When you use Agilent equipment, we can verify that it works properly, help with product operation, and provide basic measurement assistance for the use of specified capabilities, at no extra cost upon request. Many self-help tools are available.

Your Advantage

Your Advantage means that Agilent offers a wide range of additional expert test and measurement services, which you can purchase according to your unique technical and business needs. Solve problems efficiently and gain a competitive edge by contracting with us for calibration, extra-cost upgrades, out-of-warranty repairs, and on-site education and training, as well as design, system integration, project management, and other professional engineering services. Experienced Agilent engineers and technicians world-wide can help you maximize your productivity, optimize the return on investment of your Agilent instruments and systems, and obtain dependable measurement accuracy for the life of those products.

By internet, phone, or fax, get assistance with all your test and measurement needs

Online assistance: www.agilent.com/find/assist

Phone or Fax United States:

(tel) 1 800 452 4844

Canada:

(tel) 1 877 894 4414 (fax) (905) 282-6495

China:

(tel) 800 810 0189 (fax) 1 0800 650 0121

Europe:

(tel) (31 20) 547 2323 (fax) (31 20) 547 2390

Japan:

(tel) (81) 426 56 7832 (fax) (81) 426 56 7840 **Korea:**(tel) (82 2) 2004-5004 (fax) (82 2) 2004-5115

Latin America:

(tel) (305) 269 7500 (fax) (305) 269 7599

Taiwan:

(tel) 080 004 7866 (fax) (886 2) 2545 6723

Other Asia Pacific Countries:

(tel) (65) 375 8100 (fax) (65) 836 0252

Email: tm_asia@agilent.com

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies, Inc. 2003 Printed in USA, April 16, 2003 5988-7988EN

